ABI Innovation: doseR: a novel framework for dosage compensation and global expression analysis
ABI Innovation:doseR:剂量补偿和全局表达分析的新型框架
基本信息
- 批准号:1661454
- 负责人:
- 金额:$ 77.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research aims to develop and make broadly available a novel statistical methodology for analyzing patterns of gene expression that result from differences in chromosome copy number, in particular as arise on the sex-chromosomes (e.g. XX females versus XY males). Often a difference in chromosome copy number, which causes a difference in gene dose for those chromosomes, results in a corresponding effect on gene expression, termed a "dosage effect". However, in many organisms, special "dosage compensation" mechanisms have evolved to mitigate these dosage effects arising from differences in chromosome copies, such as between males and females on the sex-chromosomes. There is increasing interest in understanding which organisms employ dosage compensation mechanisms, and why. Recent advances in genome-wide assays of gene expression have greatly expanded which taxa can be assayed for dosage compensation, but analytical approaches for such data are varied, inconsistently applied, and typically do not make full use of the information available in the data. The methods and software developed from this project, called "doseR", will provide a cohesive and comprehensive solution to each of these issues. As such, the "doseR" project fills a major gap that currently exists in analytical methods for genomic investigations of dosage compensation. Furthermore, beyond dosage compensation analysis, this methodology can be generalized to identify broad shifts in gene expression between groups of genes that arise under different biological conditions. Thus, development and deployment of doseR will bridge the gap between biological intuition and bioinformatic inference, not only for dosage compensation, but also for many still as yet unforeseen lines of inquiry. This project also creates several training opportunities for undergraduate students, including intensive bioinformatic training workshops and direct participation in research activities.This research aims to develop and make broadly available a novel linear-modeling statistical methodology for analyzing sex-chromosome dosage compensation using genome-wide RNA-seq expression data. The statistical approaches currently employed for such analyses are far from ideal given the nature of the data and the desired set of inferences. Currently, biological replicates are averaged into a single measurement per gene and heavily normalized. Then particular effects of gene expression on the sex-chromosome relative to autosomes are evaluated using absolute expression while gene dosage effects are assessed using expression ratios, in both cases using non-parametric statistical tests. A more statistically robust approach is to employ linear mixed-effects modeling of gene expression. This provides a unified statistical framework to assess magnitude and significance of both chromosome-specific and dosage effects on gene expression. Moreover, it is applied directly to the sequencing read counts for each gene and incorporates scaling factors such as sequencing depth and transcript length into the models describing the data, as is done in most analyses of differential expression. As such, extensive normalization is avoided and statistical replicates are readily incorporated into the analysis. These methods will be implemented in a new software package, named "doseR", written in the R statistical programming language and distributed as part of the Bioconductor suite of bioinformatic software tools. Performance of the new statistical model and its software implementation relative to previous methods of assessing dosage compensation will be evaluated through extensive simulations of RNA-sequencing data. Application to specific empirical data sets relevant to dosage compensation will also be examined and evaluated. While the immediate motivation for software development is dosage compensation analysis, the proposed methodology can be employed in any analytical scenario requiring the detection of directional shifts in expression for multiple, specific subsets of genes. It therefore provides a tool with broad utility in systems biology research. Status and results of this project can be found at https://walterslab.github.io/doseR/.
本研究旨在开发并广泛提供一种新的统计方法,用于分析染色体拷贝数差异导致的基因表达模式,特别是性染色体上出现的差异(例如XX女性与XY男性)。通常,染色体拷贝数的差异导致这些染色体的基因剂量的差异,导致对基因表达的相应影响,称为“剂量效应”。然而,在许多生物体中,特殊的“剂量补偿”机制已经发展到减轻这些剂量效应所产生的差异,在染色体拷贝,如男性和女性之间的性染色体。有越来越多的兴趣了解哪些生物体采用剂量补偿机制,以及为什么。基因表达的全基因组测定的最新进展极大地扩展了可以测定剂量补偿的分类群,但是用于这些数据的分析方法是变化的,不一致地应用,并且通常没有充分利用数据中可用的信息。从这个项目中开发的方法和软件称为“doseR”,将为这些问题中的每一个提供一个连贯和全面的解决方案。因此,“doseR”项目填补了目前存在于剂量补偿基因组研究分析方法中的一个主要空白。此外,除了剂量补偿分析之外,这种方法可以推广到识别在不同生物条件下出现的基因组之间的基因表达的广泛变化。因此,doseR的开发和部署将弥合生物直觉和生物信息学推理之间的差距,不仅用于剂量补偿,而且用于许多尚未预见的调查路线。该项目还为本科生创造了几个培训机会,包括密集的生物信息学培训研讨会和直接参与研究活动。该研究旨在开发并广泛提供一种新的线性建模统计方法,用于使用全基因组RNA-seq表达数据分析性染色体剂量补偿。鉴于数据的性质和所需的一套推论,目前用于这种分析的统计方法远非理想。目前,生物学重复被平均为每个基因的单个测量,并被高度标准化。然后,使用绝对表达评价基因表达对性染色体相对于常染色体的特定影响,同时使用表达比率评估基因剂量效应,在两种情况下均使用非参数统计检验。一种更具有统计学稳健性的方法是采用基因表达的线性混合效应模型。这提供了一个统一的统计框架,以评估染色体特异性和剂量对基因表达的影响的幅度和意义。此外,它直接应用于每个基因的测序读段计数,并将缩放因子如测序深度和转录本长度并入描述数据的模型中,如在差异表达的大多数分析中所做的那样。因此,避免了广泛的标准化,并且易于将统计重复纳入分析中。这些方法将在一个名为“doseR”的新软件包中实施,该软件包用R统计编程语言编写,并作为生物信息学软件工具的Bioconductor套件的一部分分发。新的统计模型及其软件实现相对于先前的评估剂量补偿的方法的性能将通过RNA测序数据的广泛模拟进行评估。还将检查和评估与剂量补偿相关的特定经验数据集的应用。虽然软件开发的直接动机是剂量补偿分析,但所提出的方法可用于任何需要检测多个特定基因子集表达方向变化的分析场景。因此,它提供了一个工具,在系统生物学研究中具有广泛的实用性。该项目的状态和结果可在https://walterslab.github.io/doseR/上找到。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dichotomy of Dosage Compensation along the Neo Z Chromosome of the Monarch Butterfly
- DOI:10.1016/j.cub.2019.09.056
- 发表时间:2019-12-02
- 期刊:
- 影响因子:9.2
- 作者:Gu, Liuqi;Reilly, Patrick F.;Walters, James R.
- 通讯作者:Walters, James R.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Walters其他文献
IDENTIFYING HIGH IMPACT CODING VARIANTS CONTRIBUTING TO REDUCED COGNITIVE ABILITY IN SCHIZOPHRENIA: A TRIO-BASED ANALYSIS
- DOI:
10.1016/j.euroneuro.2022.07.284 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Alexandros Rammos;George Kirov;Hubbard Leon;James Walters;Michael O'Donovan;Michael Owen;Elliott Rees - 通讯作者:
Elliott Rees
TH16. A PIPELINE TO PROCESS AND ANALYSE EXOME SEQUENCING DATA FROM 200,000 INDIVIDUALS IN THE UK BIOBANK
- DOI:
10.1016/j.euroneuro.2021.08.190 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Eilidh Fenner;James Walters;Elliott Rees - 通讯作者:
Elliott Rees
COMBINING EXOME SEQUENCING AND MICROARRAY DATA TO IDENTIFY RARE CNVS IMPACTING COGNITION IN SCHIZOPHRENIA
- DOI:
10.1016/j.euroneuro.2022.07.529 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Jack Bakewell;Leon Hubbard;Sophie Legge;Amy Lynham;James Walters;Michael Owen;Michael O'Donovan;George Kirov;Elliott Rees - 通讯作者:
Elliott Rees
83. DAMAGING RARE CODING VARIANTS IDENTIFIED BY EXOME SEQUENCING ARE ASSOCIATED WITH REDUCED COGNITIVE FUNCTION IN SCHIZOPHRENIA
- DOI:
10.1016/j.euroneuro.2021.07.170 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Hugo Creeth;Elliott Rees;Charlotte Dennison;Peter Holmans;James Walters;Michael Owen;Michael O'Donovan - 通讯作者:
Michael O'Donovan
F19. INTERNALISING AND CARDIOMETABOLIC MULTIMORBIDITY IN OLDER-AGED INDIVIDUALS WITH NEURODEVELOPMENTAL COPY NUMBER VARIANTS: ANALYSIS IN A POPULATION-BASED COHORT
F19. 神经发育拷贝数变异的老年个体的内表型与心脏代谢多重共病:基于人群队列的分析
- DOI:
10.1016/j.euroneuro.2024.08.430 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Ioanna Katzourou;George Kirov;James Walters;Michael J Owen;Peter Holmans;Marianne van den Bree - 通讯作者:
Marianne van den Bree
James Walters的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Walters', 18)}}的其他基金
The South Wales and South West England Mental Health Platform Hub
南威尔士和英格兰西南部心理健康平台中心
- 批准号:
MR/Z503745/1 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Research Grant
Molecular Genetic Studies of Schizophrenia: Understanding Treatment Resistance and Outcomes to Inform Precision Psychiatry.
精神分裂症的分子遗传学研究:了解治疗耐药性和结果,为精准精神病学提供信息。
- 批准号:
MR/Y004094/1 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Research Grant
DISSERTATION RESEARCH: Determining anucleated sperm function in Lepidoptera
论文研究:确定鳞翅目无核精子的功能
- 批准号:
1701931 - 财政年份:2017
- 资助金额:
$ 77.53万 - 项目类别:
Standard Grant
Constraints on the evolution of chromosome dosage compensation: a test in butterflies and moths
染色体剂量补偿进化的约束:蝴蝶和飞蛾的测试
- 批准号:
1457758 - 财政年份:2015
- 资助金额:
$ 77.53万 - 项目类别:
Continuing Grant
NSF Postdoctoral Research Fellowships in Biology for FY 2009
2009 财年 NSF 生物学博士后研究奖学金
- 批准号:
0905698 - 财政年份:2010
- 资助金额:
$ 77.53万 - 项目类别:
Fellowship
Genetic susceptibility to a deficit in context processing across the schizophrenia / bipolar disorder diagnostic divide.
跨越精神分裂症/双相情感障碍诊断鸿沟的背景处理缺陷的遗传易感性。
- 批准号:
G0601635/1 - 财政年份:2007
- 资助金额:
$ 77.53万 - 项目类别:
Fellowship
Rapid In-Site Remediation of Hazardous Waste Sites Using Surfactant Biotechnology
利用表面活性剂生物技术对危险废物场地进行快速现场修复
- 批准号:
9106202 - 财政年份:1991
- 资助金额:
$ 77.53万 - 项目类别:
Continuing Grant
相似海外基金
Footwear Innovation to Improve Safety for Female Turf Sport Players (“FemFITS”)
鞋类创新可提高女性草地运动运动员的安全性 (“FemFITS”)
- 批准号:
10098494 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Collaborative R&D
Yorkshire and the Humber Policy Innovation Partnership
约克郡和汉伯政策创新伙伴关系
- 批准号:
ES/Z50239X/1 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Research Grant
NSF Engines Development Award: Building an sustainable plastics innovation ecosystem in the Midwest (MN, IL)
NSF 引擎发展奖:在中西部(明尼苏达州、伊利诺伊州)建立可持续塑料创新生态系统
- 批准号:
2315247 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Cooperative Agreement
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
- 批准号:
2348836 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Standard Grant
ART: Research to Solutions, Building Translational Capacity in the Central Florida Innovation Ecosystem
ART:从研究到解决方案,在佛罗里达州中部创新生态系统中建设转化能力
- 批准号:
2331319 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Cooperative Agreement
How the mushroom lost its gills: phylogenomics and population genetics of a morphological innovation in the fungal genus Lentinus
蘑菇如何失去鳃:香菇属真菌形态创新的系统基因组学和群体遗传学
- 批准号:
2333266 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Continuing Grant
REU Site: Polymer Innovation for a Sustainable Future
REU 网站:聚合物创新打造可持续未来
- 批准号:
2348780 - 财政年份:2024
- 资助金额:
$ 77.53万 - 项目类别:
Standard Grant