Real-time Management of Large Fleets of Self-Driving Vehicles Using Virtual Cyber Tracks

使用虚拟网络轨道实时管理大型自动驾驶车队

基本信息

  • 批准号:
    1663657
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

It is only a matter of time before the transportation infrastructure of freeways, roads, and traffic control systems must accommodate self-driving vehicles (SDVs) at the same time as manually driven vehicles (MDVs). In large scale systems that exist in nearly all metropolitan areas, the question is how can we efficiently, reliably and safely accomplish this? This project aims to generate fundamental knowledge needed to design such a system. More specifically, the project will study and develop decision models and algorithms, and attendant decision-support systems to manage, in real time, large fleets of SDVs and MDVs on the current infrastructure, without the need to construct special roads or guideways. This project will assume that SDVs are cyber-connected and that, through cyber mechanisms of computing and communication, it is possible to guide these SDVs, both individually and in platoons, on our transportation infrastructure efficiently, without sacrificing comfort, safety and efficiency in mobility. The fundamental concepts in the decision-support architecture are (a) controlling directions, speeds and stops to individual SDVs in real-time, (b) grouping SDVs in platoons, (c) moving SDVs in platoons, with short and uniform headways, using the concept of cyber-enabled virtual tracks on the roads, and (d) providing traffic signals on the roads and blocking control (platooning sizing and dispatching) on the virtual tracks to maximize throughput and other desirable traffic performance measures. In addition to the tools developed for operating SDVs in real time, this project will help transportation agencies to efficiently satisfy increasing transportation demand with limited road infrastructure expansion and constrained road capacity. Finally, the research and tools will be integrated into the current and new courses and laboratories for computer science, operations research, and transportation engineering courses.This project will address fundamental knowledge in networking self-driving agents at extremely large scales to meet temporally and spatially distributed traveler demand. The goal is to develop a set of new models for integrated traveler mobility optimization and multi-agent-based control under the new environment of shared SDV networks. It will investigate a novel cyber-track based concept and methods that optimally provide real-time guidance to meet temporally and spatially distributed traveler demand for SDVs (from origins, to intermediate platoons, to destinations), possibly leading to new large scale nonlinear optimization methods that include vehicular dynamics and safety/comfort consideration. By taking full advantage of distributed computing power associated with connected SDVs, the dispatching and operating system for SDVs will simultaneously route and control individual SDVs and platoons on existing highways and streets. Based on a space-time cyber track network modeling framework for representing physical transportation system with constraints, the project will also develop real-time algorithms for proactive control of traffic supply infrastructure (e.g., traffic signals, ramp meters, and traffic information and congestion pricing) that optimizes delays and other performance metrics for both SDVs and MDVs. The project will integrate parallel computing and hierarchical system control, as well as a wide range of real-time vehicle routing/scheduling algorithms, including vehicle routing for platooning, block control and timetabling, to ensure the safety, efficiency and reliability of SDV operations. The project will also study the computational tractability of large scale deployment of SDVs using tools of cloud computing, big data management and parallel computation. The project will develop protocols of collecting steaming data from connected SDVs and managing, distributed computing, and effective logistics for SDV fleets.
高速公路、道路和交通控制系统等交通基础设施必须同时容纳自动驾驶车辆(SDV)和手动驾驶车辆(MDV),这只是时间问题。在几乎所有大都市地区都存在的大规模系统中,问题是我们如何有效,可靠和安全地实现这一目标?该项目旨在产生设计这样一个系统所需的基本知识。更具体地说,该项目将研究和开发决策模型和算法,以及随之而来的决策支持系统,以真实的时间管理现有基础设施上的大型SDV和MDV车队,而无需建造特殊的道路或导轨。该项目将假设SDV是网络连接的,并且通过计算和通信的网络机制,可以在我们的交通基础设施上有效地引导这些SDV,无论是单独的还是成排的,而不会牺牲舒适性,安全性和流动性的效率。决策支持架构中的基本概念是(a)实时控制各个SDV的方向、速度和停止,(B)将SDV分组为队列,(c)使用道路上的网络启用虚拟轨道的概念,以短且均匀的车头时距按队列移动SDV,以及(d)在道路上提供交通信号,并在虚拟轨道上提供阻塞控制(排队大小和调度),以最大化吞吐量和其他期望的交通性能测量。除了为真实的运行SDV开发的工具外,该项目还将帮助运输机构在道路基础设施扩建有限和道路容量有限的情况下有效满足日益增长的运输需求。最后,研究和工具将被整合到计算机科学,运筹学和交通工程课程的现有和新课程和实验室中。该项目将解决超大规模网络自动驾驶代理的基础知识,以满足时间和空间分布的旅行者需求。目标是在共享SDV网络的新环境下,开发一套新的模型,用于集成的旅行者移动性优化和基于多智能体的控制。它将研究一种新的基于网络轨道的概念和方法,最佳地提供实时指导,以满足时间和空间分布的旅行者对SDV的需求(从起点,到中间排,到目的地),可能导致新的大规模非线性优化方法,包括车辆动力学和安全性/舒适性的考虑。通过充分利用与连接的SDV相关的分布式计算能力,SDV的调度和操作系统将同时路由和控制现有高速公路和街道上的单个SDV和车队。基于用于表示具有约束的物理交通系统的时空网络跟踪网络建模框架,该项目还将开发用于交通供应基础设施(例如,交通信号、匝道仪表、交通信息和拥堵定价),优化SDV和MDV的延迟和其他性能指标。该项目将集成并行计算和分层系统控制,以及广泛的实时车辆路线/调度算法,包括队列车辆路线,块控制和调度,以确保SDV操作的安全性,效率和可靠性。该项目还将研究使用云计算,大数据管理和并行计算工具大规模部署SDV的计算可处理性。该项目将开发从连接的SDV收集流数据的协议,并为SDV车队管理,分布式计算和有效的物流。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic programming-based multi-vehicle longitudinal trajectory optimization with simplified car following models
  • DOI:
    10.1016/j.trb.2017.10.012
  • 发表时间:
    2017-12
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Yuguang Wei;C. Avci;C. Avci;C. Avci;Jiangtao Liu;Baloka Belezamo;Baloka Belezamo;N. Aydin;P. Li;Xuesong Zhou
  • 通讯作者:
    Yuguang Wei;C. Avci;C. Avci;C. Avci;Jiangtao Liu;Baloka Belezamo;Baloka Belezamo;N. Aydin;P. Li;Xuesong Zhou
Open-source VRPLite Package for Vehicle Routing with Pickup and Delivery: A Path Finding Engine for Scheduled Transportation Systems
  • DOI:
    10.1007/s40864-018-0083-7
  • 发表时间:
    2018-06
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Xuesong Zhou;L. Tong;M. Mahmoudi;Lijuan Zhuge;Yu Yao;Yongxiang Zhang;Pan Shang;Jiangtao Liu;Tie Shi
  • 通讯作者:
    Xuesong Zhou;L. Tong;M. Mahmoudi;Lijuan Zhuge;Yu Yao;Yongxiang Zhang;Pan Shang;Jiangtao Liu;Tie Shi
A stepwise interpretable machine learning framework using linear regression (LR) and long short-term memory (LSTM): City-wide demand-side prediction of yellow taxi and for-hire vehicle (FHV) service
Integrated vehicle assignment and routing for system-optimal shared mobility planning with endogenous road congestion
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xuesong Zhou其他文献

Toward high-efficiency and thermally-stable perovskite solar cells: A novel metal-organic framework with active pyridyl sites replacing 4-tert-butylpyridine
迈向高效和热稳定的钙钛矿太阳能电池:一种新型金属有机框架,具有取代4-叔丁基吡啶的活性吡啶基位点
  • DOI:
    10.1016/j.jpowsour.2020.228556
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Xuesong Zhou;Lele Qiu;Ruiqing Fan;Haoxin Ye;Changhao Tian;Sue Hao;Yulin Yang
  • 通讯作者:
    Yulin Yang
Summary of photo voltaic and maximum power point tracking
光伏与最大功率点跟踪总结
Improved Active Disturbance Rejection Control with Active Damping Wind Power Grid-Connected Inverter
改进的有源阻尼风电并网逆变器有源抗扰控制
PY 02 Development of a Mobile Probe-Based Traffic Data Fusion and Flow Management Platform for Innovative Public-Private Information-Based Partnerships
PY 02 开发基于移动探针的交通数据融合和流量管理平台,以实现创新的公私信息合作伙伴关系
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuesong Zhou;Sushant Sharma;S. Peeta
  • 通讯作者:
    S. Peeta
Determination of absolute molar mass of acetylated kraft lignins by size-exclusion chromatography with a multi-angle laser light-scattering detector.
使用多角度激光光散射检测器通过尺寸排阻色谱法测定乙酰化牛皮纸木质素的绝对摩尔质量。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Linping Wang;Yasumitsu Uraki;Keiichi Koda;Aori Gele;Xuesong Zhou;Fangeng Chen
  • 通讯作者:
    Fangeng Chen

Xuesong Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xuesong Zhou', 18)}}的其他基金

POSE: Phase II: CONNECT: Consortium of Open-source plaNNing models for Next-generation Equitable and efficient Communities and Transportation
POSE:第二阶段:CONNECT:下一代公平高效社区和交通的开源规划模型联盟
  • 批准号:
    2303748
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Improving Spatial Observability of Dynamic Traffic Systems through Active Mobile Sensor Networks and Crowdsourced Data
合作研究:通过主动移动传感器网络和众包数据提高动态交通系统的空间可观测性
  • 批准号:
    1538569
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似国自然基金

SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
  • 批准号:
    82360504
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
  • 批准号:
    82305023
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
  • 批准号:
    62171167
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
  • 批准号:
    31971706
  • 批准年份:
    2019
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
Time-of-Flight深度相机多径干扰问题的研究
  • 批准号:
    61901435
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
  • 批准号:
    71771224
  • 批准年份:
    2017
  • 资助金额:
    49.0 万元
  • 项目类别:
    面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CRII: SCH: Towards Smart Patient Flow Management: Real-time Inpatient Length of Stay Modeling and Prediction
CRII:SCH:迈向智能患者流程管理:实时住院患者住院时间建模和预测
  • 批准号:
    2246158
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Towards real-time precision crop management: automatic during-harvest assessment of apple yield
实现实时精准作物管理:苹果产量收获期间自动评估
  • 批准号:
    10080669
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant for R&D
Optimizing Use of Advanced Diabetes Technology for Self-Management in Adolescents with Type 1 Diabetes: Integration of Real-Time Glucose and Narrative Data
优化使用先进糖尿病技术对 1 型糖尿病青少年进行自我管理:实时血糖和叙述数据的集成
  • 批准号:
    10569293
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Using real-world evidence to define safe pain management strategies in cirrhosis
使用现实世界的证据来定义肝硬化的安全疼痛管理策略
  • 批准号:
    10808794
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Real-time Volumetric Imaging for Motion Management and Dose Delivery Verification
用于运动管理和剂量输送验证的实时体积成像
  • 批准号:
    10659842
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Fault-Tolerant Energy Management for Highly Dependable Real-Time Embedded Systems
高度可靠的实时嵌入式系统的容错能源管理
  • 批准号:
    2302651
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A big data management framework on fog devices for real-time IoT and computer vision applications
用于实时物联网和计算机视觉应用的雾设备大数据管理框架
  • 批准号:
    22KF0314
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
SBIR Phase I: A real-time precision nutrient analysis and management system for hydroponic farming operations
SBIR 第一阶段:用于水培农业作业的实时精确养分分析和管理系统
  • 批准号:
    2210046
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SBIR Phase I: Wearable System for Stress Management via Real Time Stress Tracking and Biofeedback
SBIR 第一阶段:通过实时压力跟踪和生物反馈进行压力管理的可穿戴系统
  • 批准号:
    2212935
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CCRI: Planning-C: Planning to Build Digital Infrastructure for Real-Time, Continual, and Intelligent Transportation Analysis and Management
CCRI:Planning-C:规划构建实时、持续、智能交通分析和管理的数字基础设施
  • 批准号:
    2213731
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了