Questions in Nonlinear Partial Differential Equations

非线性偏微分方程问题

基本信息

  • 批准号:
    1664297
  • 负责人:
  • 金额:
    $ 21.26万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The project focuses on the studies of partial differential equations describing fluid flows. These equations play an important role in many areas of science and engineering, and they are at the basis of computer codes used today for modeling fluids, from weather prediction to aircraft and car design, and any number of other applications. Mathematically, the equations are notoriously difficult to solve and even if we use large computers, our computer models are still not as reliable as we would like. It is interesting to compare the situation for example with calculating the stress in complicated rigid structures. The stress calculations are governed by a different set of equations, and in many cases, they can be done with very good precision. One of the reasons is that the underlying equations for stress in rigid structures are much better understood mathematically. The difficulties with fluid calculations are essentially two-fold. First, the solutions are intrinsically complicated, regardless of how good our theory is. Second, our theory is fundamentally incomplete, and therefore we have to deal with a lot of uncertainty in a very difficult computational environment. While there is not much we can do about the first difficulty, the second difficulty can be addressed by improving our mathematical understanding of the equations. The ultimate goal of the research is to understand the behavior of the solutions to the degree that we would be able to design better algorithms for the solutions. The role of good theory in solving differential equations can be well illustrated on a simpler problem of solving equations of motion for planetary systems. In that case, if we use deeper mathematical properties of the equations of motion, we can significantly extend the precision of the algorithms, and make predictions for much longer time-scales. With fluid equations, the situation is more difficult, because ultimately we cannot hope to follow every drop of water when simulating, say, an ocean current, or a fast flow in a large water turbine. In the end, we have to use some averaging, and the right choice of averaging is the most difficult part. A good mathematical knowledge of the theoretical issues surrounding the fluid equations is important for achieving these goals.At a more technical level, the research will focus on the following areas: the generation of small scales and long-time behavior of 2d fluids, the limits of perturbation theory, model equations, and 2-d turbulence and partial damping. By way of example we will describe our program in the study of turbulence. This work will test (at the mathematical level) our best theories of turbulence, in the 2d environment. (The 3d problems are currently out of reach). Currently, the turbulence theory is based on some heuristic assumptions about averaging. Can the heuristics be justified mathematically? At a more technical level, what happens if we remove viscous damping on a few high Fourier modes? The heuristic turbulence theory predicts that this will have hardly any effect on the overall behavior of the fluid (in a turbulent regime). Due to recent advances in mathematical methods, this problem may now be within reach (although it is still difficult). The remaining problems are similarly intricate, however the principal investigator has developed new methods for each of them and it is expected that significant progress will be made.
该项目侧重于研究描述流体流动的偏微分方程。这些方程在科学和工程的许多领域中发挥着重要作用,它们是今天用于建模流体的计算机代码的基础,从天气预测到飞机和汽车设计,以及任何其他应用。从数学上讲,这些方程是出了名的难以求解,即使我们使用大型计算机,我们的计算机模型仍然不像我们希望的那样可靠。有趣的是,将这种情况与计算复杂刚性结构中的应力进行比较。应力计算由一组不同的方程控制,在许多情况下,它们可以非常精确地完成。其中一个原因是,刚性结构中的应力方程在数学上更容易理解。流体计算的困难主要有两方面。首先,无论我们的理论有多好,解决方案本质上都是复杂的。第二,我们的理论从根本上说是不完整的,因此我们必须在非常困难的计算环境中处理大量的不确定性。虽然我们对第一个困难无能为力,但第二个困难可以通过提高我们对方程的数学理解来解决。研究的最终目标是了解解决方案的行为,以便我们能够为解决方案设计更好的算法。好的理论在解微分方程中的作用可以用一个简单的问题来说明,即解行星系统的运动方程。在这种情况下,如果我们使用运动方程的更深层次的数学性质,我们可以显着扩展算法的精度,并对更长的时间尺度进行预测。对于流体方程,情况就更困难了,因为最终我们不能指望在模拟洋流或大型水轮机涡轮机中的快速流动时跟踪每一滴水。最后,我们必须使用一些平均值,而正确选择平均值是最困难的部分。围绕流体方程的理论问题的良好数学知识对于实现这些目标是重要的。在更技术的层面上,研究将集中在以下领域:二维流体的小尺度和长时间行为的产生,微扰理论的限制,模型方程,以及二维湍流和部分阻尼。 我们将举例说明我们在湍流研究方面的计划。这项工作将在2d环境中测试(在数学水平上)我们最好的湍流理论。(The 3D问题目前还无法解决)。 目前,湍流理论是基于一些关于平均的启发式假设。数学上能证明这种方法吗?在更技术的层面上,如果我们去除一些高傅立叶模式上的粘性阻尼,会发生什么?启发式湍流理论预测,这对流体的整体行为几乎没有任何影响(在湍流状态下)。由于数学方法的最新进展,这个问题现在可能触手可及(尽管仍然很难)。 剩下的问题也同样复杂,但主要研究人员已经为每个问题开发了新的方法,预计将取得重大进展。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Asymptotics of Stationary Navier Stokes Equations in Higher Dimensions
高维稳态纳维斯托克斯方程的渐近性
On the De Gregorio modification of the Constantin-Lax-Majda model
关于 Constantin-Lax-Majda 模型的 De Gregorio 修正
On stability of weak Navier-Stokes solutions with large L3,∞ initial data.
关于具有大 L3 的弱 Navier-Stokes 解的稳定性,初始数据。
On certain models in the PDE theory of fluid flows
流体流动偏微分方程理论中的某些模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vladimir Sverak其他文献

Vladimir Sverak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vladimir Sverak', 18)}}的其他基金

Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
  • 批准号:
    1956092
  • 财政年份:
    2020
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
The Twentieth Riviere-Fabes Symposium
第二十届Riviere-Fabes研讨会
  • 批准号:
    1665006
  • 财政年份:
    2017
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Aspects of well-possedeness and long time behavior for non-linear PDEs
非线性偏微分方程的完备性和长时间行为
  • 批准号:
    1362467
  • 财政年份:
    2014
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
The Sixteenth Riviere-Fabes Symposium
第十六届Riviere-Fabes研讨会
  • 批准号:
    1304998
  • 财政年份:
    2013
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
  • 批准号:
    1159376
  • 财政年份:
    2012
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Aspects of regularity theory for PDE
PDE 正则性理论的各个方面
  • 批准号:
    1101428
  • 财政年份:
    2011
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
Riviere-Fabes Symposium
里维埃-法贝斯研讨会
  • 批准号:
    1004156
  • 财政年份:
    2010
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Problems in Nonlinear Partial Differential Equations
非线性偏微分方程问题
  • 批准号:
    0800908
  • 财政年份:
    2008
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
Ninth Riviere-Fabes Symposium on Analysis and PDE, April 2006
第九届 Riviere-Fabes 分析和偏微分方程研讨会,2006 年 4 月
  • 批准号:
    0606843
  • 财政年份:
    2006
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Nonlinear Stochastic Partial Differential Equations and Applications
非线性随机偏微分方程及其应用
  • 批准号:
    2307610
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
  • 批准号:
    2246031
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Toward a global analysis on solutions of nonlinear partial differential equations
非线性偏微分方程解的全局分析
  • 批准号:
    23K03165
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
  • 批准号:
    2247027
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Standard Grant
Separation Rates for Dissipative Nonlinear Partial Differential Equations
耗散非线性偏微分方程的分离率
  • 批准号:
    2307097
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2318032
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
Singularity and structure of solutions to nonlinear elliptic partial differential equations
非线性椭圆偏微分方程解的奇异性和结构
  • 批准号:
    23K03167
  • 财政年份:
    2023
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations in heterogeneous frameworks
异构框架中的非线性偏微分方程
  • 批准号:
    RGPIN-2017-04313
  • 财政年份:
    2022
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Discovery Grants Program - Individual
Expressivity of Structure-Preserving Deep Neural Networks for the Space-Time Approximation of High-Dimensional Nonlinear Partial Differential Equations with Boundaries
保结构深度神经网络的表达能力用于高维非线性有边界偏微分方程的时空逼近
  • 批准号:
    2206675
  • 财政年份:
    2022
  • 资助金额:
    $ 21.26万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了