Problems in Nonlinear Partial Differential Equations
非线性偏微分方程问题
基本信息
- 批准号:0800908
- 负责人:
- 金额:$ 38.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Broadly speaking, the project addresses open problems in regularity theory of elliptic and parabolic nonlinear systems of partial differential equations, as well as several problems from the theory of incompressible Euler equations. Most of the elliptic and parabolic problems are formulated in the context of the incompressible Navier-Stokes equations, but various model equations will also be studied and the insight obtained from the model equations is expected to be important. The main emphasis is on developing methods and techniques for problems that are out of the reach of perturbation theory. For certain classes of equations (such as, for example, the Navier-Stokes equation) such problems are of considerable theoretical and practical importance. Partial differential equations represent a basic tools for modeling many natural and technological phenomena. For instance, the equations describing fluid flow (on which an important part of this project will concentrate) are used in weather prediction, climate research, and various technological applications, such as the design of optimal aerodynamical shapes. The equations of fluid dynamics are notoriously difficult to solve, even with the help of the largest computers. Some of these difficulties are intrinsic, but some are due to the fact that our mathematical understanding of the equations themselves is incomplete. Advances in theoretical understanding of partial differential equations can lead to substantial improvement in practical methods for solving them. In the final analysis, the main task of the theoretical investigation is to find some simple and natural parameters that control the behavior of the solutions. Once a good set of such parameters is known, it becomes much easier to design practical methods for calculating the solutions. Reason: armed with such parameters a researcher knows what is important and what is not when one tracks a solution. The researcher can then focus computational power on the aspects that really matter. The proposed research can have a significant impact in this direction.
从广义上讲,该项目解决了椭圆型和抛物型非线性偏微分方程组的正则性理论中的开放性问题,以及不可压缩欧拉方程理论中的若干问题。大多数椭圆型和抛物型问题都是在不可压缩的Navier-Stokes方程的背景下表述的,但也将研究各种模型方程,并且从模型方程中获得的见解预计是重要的。主要的重点是发展的方法和技术的问题是超出了摄动理论的范围。对于某些类型的方程(例如,Navier-Stokes方程),这些问题具有相当大的理论和实践意义。偏微分方程是许多自然和技术现象建模的基本工具。例如,描述流体流动的方程(这是本项目的一个重要部分)用于天气预报、气候研究和各种技术应用,例如设计最佳空气动力学形状。众所周知,流体动力学方程很难解,即使有最大的计算机的帮助。这些困难有些是内在的,但有些是由于我们对方程本身的数学理解不完整。对偏微分方程的理论理解的进步可以导致求解偏微分方程的实际方法的实质性改进。归根结底,理论研究的主要任务是找到一些简单而自然的参数来控制解的行为。一旦知道了这些参数的集合,设计计算解的实用方法就容易多了。原因:有了这些参数,研究人员在跟踪解决方案时就知道什么是重要的,什么是不重要的。然后,研究人员可以将计算能力集中在真正重要的方面。所提出的研究可以在这个方向上产生重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vladimir Sverak其他文献
Vladimir Sverak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vladimir Sverak', 18)}}的其他基金
Topics in the Analysis of Nonlinear Partial Differential Equations
非线性偏微分方程分析专题
- 批准号:
2247027 - 财政年份:2023
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
- 批准号:
1956092 - 财政年份:2020
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
The Twentieth Riviere-Fabes Symposium
第二十届Riviere-Fabes研讨会
- 批准号:
1665006 - 财政年份:2017
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Questions in Nonlinear Partial Differential Equations
非线性偏微分方程问题
- 批准号:
1664297 - 财政年份:2017
- 资助金额:
$ 38.61万 - 项目类别:
Continuing Grant
Aspects of well-possedeness and long time behavior for non-linear PDEs
非线性偏微分方程的完备性和长时间行为
- 批准号:
1362467 - 财政年份:2014
- 资助金额:
$ 38.61万 - 项目类别:
Continuing Grant
The Sixteenth Riviere-Fabes Symposium
第十六届Riviere-Fabes研讨会
- 批准号:
1304998 - 财政年份:2013
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities, mixing and long time behavior in nonlinear evolution
FRG:协作研究:非线性演化中的奇异性、混合和长期行为
- 批准号:
1159376 - 财政年份:2012
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Aspects of regularity theory for PDE
PDE 正则性理论的各个方面
- 批准号:
1101428 - 财政年份:2011
- 资助金额:
$ 38.61万 - 项目类别:
Continuing Grant
Ninth Riviere-Fabes Symposium on Analysis and PDE, April 2006
第九届 Riviere-Fabes 分析和偏微分方程研讨会,2006 年 4 月
- 批准号:
0606843 - 财政年份:2006
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
相似海外基金
Inverse Problems for Nonlinear Partial Differential Equations
非线性偏微分方程的反问题
- 批准号:
2111020 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
2105460 - 财政年份:2021
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Geometric Variational Problems and Nonlinear Partial Differential Equations
几何变分问题和非线性偏微分方程
- 批准号:
1811034 - 财政年份:2018
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1656030 - 财政年份:2016
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Linear and nonlinear problems in dispersive Partial Differential Equations
色散偏微分方程中的线性和非线性问题
- 批准号:
1600942 - 财政年份:2016
- 资助金额:
$ 38.61万 - 项目类别:
Continuing Grant
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
16K05240 - 财政年份:2016
- 资助金额:
$ 38.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Nonlinear partial differential equations and continuum limits for large discrete sorting problems
大型离散排序问题的非线性偏微分方程和连续极限
- 批准号:
1500829 - 财政年份:2015
- 资助金额:
$ 38.61万 - 项目类别:
Standard Grant
Geometric evolution problems in nonlinear partial differential equations
非线性偏微分方程中的几何演化问题
- 批准号:
DP150101275 - 财政年份:2015
- 资助金额:
$ 38.61万 - 项目类别:
Discovery Projects
Singularity, degeneracy and related problems in nonlinear partial differential equations
非线性偏微分方程的奇异性、简并性及相关问题
- 批准号:
DP130102773 - 财政年份:2013
- 资助金额:
$ 38.61万 - 项目类别:
Discovery Projects
Study on variational problems, optimization problems and nonlinear partial differential equations
变分问题、优化问题和非线性偏微分方程研究
- 批准号:
25400180 - 财政年份:2013
- 资助金额:
$ 38.61万 - 项目类别:
Grant-in-Aid for Scientific Research (C)