FRG: cQIS: Collaborative Research: Mathematical Foundations of Topological Quantum Computation and Its Applications
FRG:cQIS:协作研究:拓扑量子计算的数学基础及其应用
基本信息
- 批准号:1664351
- 负责人:
- 金额:$ 36.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A second quantum revolution in and around the construction of a useful quantum computer has been advancing dramatically in the last few years. Topological phases of matter, the importance of which has been recognized by scientific awards that include the 2016 Nobel prize in physics, exhibit many-body quantum entanglement. This makes such materials prime candidates for use in a quantum computer. Topological quantum computation is maturing at the forefront of the second quantum revolution as a primary application of topological phases of matter. The theoretical foundation for the second quantum revolution remains under development, but it appears clear that algebras and their representations will play a role analogous to that played by group theory in the first quantum revolution. This focused research group aims to formulate the theoretical foundations of topological quantum computation, leading to an eventual theoretical foundation for the second quantum revolution. It is anticipated that the results of the research will guide and accelerate the construction of a topological quantum computer. A working topological quantum computer will fundamentally transform the landscape of information science and technology. The project includes participation by graduate students and postdoctoral associates in the interdisciplinary research.The goal of topological quantum computation is the construction of a useful quantum computer based on braiding anyons. The hardware of an anyonic quantum computer will be a topological phase of matter that harbors non-abelian anyons. A physical system is in a topological phase if at low energies some physical quantities are topologically invariant. Topological properties are non-local, yet can manifest themselves through local geometric properties. The success of topological quantum computation hinges on controlling topological phases and understanding their computational power. This research addresses the mathematical, physical, and computational aspects of topological quantum computation. The projects include classification of super-modular categories, vector-valued modular forms for modular categories, extension of modular categories to three dimensions, simulation of conformal field theories, topological quantum computation with gapped boundaries and symmetry defects, and universality of topological computing models. The research has potential impacts ranging from new understanding of vertex operator algebras to the development of useful quantum computers. One specific goal is a structure theory of modular categories analogous to that of finite groups. Such a theory would lead to a structure theory of two-dimensional topological phases of matter.
在过去的几年里,围绕着建造一台有用的量子计算机而进行的第二次量子革命取得了戏剧性的进展。物质的拓扑相表现出多体量子纠缠,其重要性已经得到包括2016年诺贝尔物理学奖在内的科学奖的认可。这使得这种材料成为量子计算机中使用的主要候选材料。作为物质拓扑相的主要应用,拓扑量子计算正在第二次量子革命的前沿走向成熟。第二次量子革命的理论基础仍在发展中,但显然,代数及其表示将发挥类似于群论在第一次量子革命中所起的作用。这个重点研究小组旨在阐明拓扑量子计算的理论基础,最终为第二次量子革命奠定理论基础。预计研究成果将指导和加快拓扑量子计算机的建设。一台工作的拓扑量子计算机将从根本上改变信息科学和技术的面貌。该项目包括研究生和博士后研究员参与跨学科研究。拓扑量子计算的目标是构建一种基于编织任意子的有用的量子计算机。任意子量子计算机的硬件将是包含非阿贝尔任意子的物质的拓扑相。如果一个物理系统在低能量下某些物理量是拓扑不变的,则该物理系统处于拓扑阶段。拓扑特性是非局部的,但可以通过局部几何特性表现出来。拓扑量子计算的成功与否取决于对拓扑相的控制和对其计算能力的理解。这项研究解决了拓扑量子计算的数学、物理和计算方面的问题。这些项目包括超模范畴的分类,模范畴的向量值模形式,模范畴到三维的扩展,共形场理论的模拟,有间隙边界和对称缺陷的拓扑量子计算,以及拓扑计算模型的普适性。这项研究具有潜在的影响,从对顶点算子代数的新理解到有用的量子计算机的开发。一个具体的目标是建立一个类似于有限群的模范畴的结构理论。这样的理论将导致物质的二维拓扑相的结构理论。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On acyclic anyon models
在非循环任意子模型上
- DOI:10.1007/s11128-018-2012-9
- 发表时间:2018
- 期刊:
- 影响因子:2.5
- 作者:Galindo, César;Rowell, Eric;Wang, Zhenghan
- 通讯作者:Wang, Zhenghan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhenghan Wang其他文献
On Realizing Modular Data.
关于实现模块化数据。
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Parsa Bonderson;E. Rowell;Zhenghan Wang - 通讯作者:
Zhenghan Wang
Theory of dc currents in SIS junctions with anisotropic pairing symmetry
具有各向异性配对对称性的 SIS 结中的直流电流理论
- DOI:
10.1006/spmi.1999.0705 - 发表时间:
1999 - 期刊:
- 影响因子:3.1
- 作者:
Jun;J. Dong;Zhenghan Wang - 通讯作者:
Zhenghan Wang
Large quantum Fourier transforms are never exactly realized by braiding conformal blocks
大型量子傅立叶变换永远无法通过编织共形块来精确实现
- DOI:
10.1103/physreva.75.032322 - 发表时间:
2006 - 期刊:
- 影响因子:2.9
- 作者:
M. Freedman;Zhenghan Wang - 通讯作者:
Zhenghan Wang
Self-homeomorphisms of 4-manifolds with fundamental group Z
基本群 Z 的 4 流形的自同构
- DOI:
10.1016/s0166-8641(99)00076-0 - 发表时间:
2000 - 期刊:
- 影响因子:0.6
- 作者:
R. Stong;Zhenghan Wang - 通讯作者:
Zhenghan Wang
Rank 4 premodular categories Paul Bruillard Appendix with
排名 4 前模块类别 Paul Bruillard 附录
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
César Galindo;S. Ng;J. Plavnik;E. Rowell;Zhenghan Wang - 通讯作者:
Zhenghan Wang
Zhenghan Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhenghan Wang', 18)}}的其他基金
Collaborative Research: FET: Small: Topological quantum computing beyond anyons
合作研究:FET:小型:超越任意子的拓扑量子计算
- 批准号:
2006463 - 财政年份:2020
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Collaborative Research: Mathematical Foundations of Topological Quantum Computation
合作研究:拓扑量子计算的数学基础
- 批准号:
1411212 - 财政年份:2015
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Collaborative Research: Topological Phases of Matter and Their Application to Quantum Computing
合作研究:物质的拓扑相及其在量子计算中的应用
- 批准号:
1108736 - 财政年份:2011
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Quantum-QuBIC: Topological Quantum Computation
Quantum-QuBIC:拓扑量子计算
- 批准号:
0130388 - 财政年份:2001
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627757 - 财政年份:1996
- 资助金额:
$ 36.81万 - 项目类别:
Fellowship Award
相似海外基金
CQIS: Operator algebra and Quantum Information Theory
CQIS:算子代数和量子信息论
- 批准号:
2247114 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
CQIS: RUI: Quantum Resources via Free Operation Symmetry
CQIS:RUI:通过自由操作对称的量子资源
- 批准号:
2309157 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322891 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: On-Chip Nanoscale Trap and Enhance Device (NOTED) for Quantum Photonics
合作研究:CQIS:用于量子光子学的片上纳米级陷阱和增强器件(注释)
- 批准号:
2322892 - 财政年份:2023
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
- 批准号:
2204382 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
Collaborative Research: CQIS: A Sound Leap (SouL)
合作研究:CQIS:声音飞跃 (SouL)
- 批准号:
2204400 - 财政年份:2022
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
CQIS: Quantum Chaos and Quantum Gravity from Entanglement
CQIS:纠缠中的量子混沌和量子引力
- 批准号:
2111998 - 财政年份:2021
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
CQIS: RUI: Quantum State Symmetry and Applications
CQIS:RUI:量子态对称性及其应用
- 批准号:
2011074 - 财政年份:2020
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant
RUI: CQIS: OP: State-Preparation-and-Measurement Tomography
RUI:CQIS:OP:状态准备和测量断层扫描
- 批准号:
1855174 - 财政年份:2018
- 资助金额:
$ 36.81万 - 项目类别:
Standard Grant