CQIS: Quantum Chaos and Quantum Gravity from Entanglement

CQIS:纠缠中的量子混沌和量子引力

基本信息

  • 批准号:
    2111998
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

A counter-intuitive feature of quantum mechanics is that two particles far away can have quantum entanglement, which is a kind of nonlocal correlation that is stronger than anything possibly allowed by classical mechanics. Einstein famously described quantum entanglement as “spooky action at a distance”. Another fundamental question in physics is the origin of gravity. According to Einstein’s general relativity, matter and energy distort the spacetime in a similar way as how pushing with a finger deforms a balloon. Despite the remarkable success of the Einstein theory, it does not tell us why our spacetime “balloon” behaves this way, and how to describe it using quantum mechanics. Surprisingly, these two fundamental open questions---quantum entanglement and quantum gravity---could be two sides of one coin. Roughly speaking, the idea is that quantum entanglement is the fiber that forms the spacetime geometry. Having more quantum entanglement between two regions will make them closer to each other in space. From this point of view, it is natural that matter affects geometry, since the dynamics of matter leads to evolution of quantum entanglement. A lot of evidence has been found to support this idea, but the general theory behind this duality between entanglement and gravity has not been developed. The goal of this project is to advance the understanding to the connection between quantum entanglement and quantum gravity. More specifically, the PI plans to study the entanglement-gravity correspondence in two directions. The first direction is to apply quantum information theory to gain new understanding to quantum gravity. While it remains unknown how to build a complete theory of quantum gravity, there are toy models which demonstrate some feature of this correspondence while still being simple enough for concrete calculations. The PI plans to use such toy models including the Sachdev-Ye-Kitaev model and random tensor network models to study black hole interior physics. Black holes are simple examples of spacetime geometry with a strong gravity effect. The fate of information falling into a black hole is a concrete problem that is beyond general relativity. The goal of this project is to have a more microscopic understanding of how to describe the spacetime geometry in the interior of the black hole, and how to retrieve information in the interior from outside. The second direction of this project is to use the entanglement-gravity correspondence to study new questions in quantum information theory. For example, how to define and probe the causal structure in a general quantum many-body system? How to measure the complexity of quantum dynamics? How can quantum computers help in learning physical properties of a quantum system? A combination of quantum information theory tools and insights from gravity theory brings new ways to address such fundamental questions, which will be studied in this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子力学的一个反直觉的特征是,两个远离的粒子可以有量子纠缠,这是一种非局域关联,比经典力学可能允许的任何关联都要强。爱因斯坦曾将量子纠缠描述为“幽灵般的超距作用”。物理学中的另一个基本问题是引力的起源。根据爱因斯坦的广义相对论,物质和能量扭曲时空的方式与用手指推动气球变形的方式类似。尽管爱因斯坦理论取得了巨大的成功,但它并没有告诉我们为什么我们的时空“气球”会这样,以及如何用量子力学来描述它。令人惊讶的是,这两个基本的开放问题--量子纠缠和量子引力--可能是一枚硬币的两面。粗略地说,这个想法是量子纠缠是形成时空几何的纤维。在两个区域之间有更多的量子纠缠将使它们在空间中彼此更接近。从这个角度来看,物质影响几何是很自然的,因为物质的动力学导致量子纠缠的演化。已经发现了很多证据来支持这个想法,但是纠缠和引力之间的这种二元性背后的一般理论还没有发展。该项目的目标是推进对量子纠缠和量子引力之间联系的理解。 更具体地说,PI计划在两个方向上研究纠缠-引力对应关系。第一个方向是应用量子信息理论对量子引力有新的认识。虽然如何建立一个完整的量子引力理论仍然是未知的,但有一些玩具模型展示了这种对应的一些特征,同时仍然足够简单,可以进行具体的计算。PI计划使用包括Sachdev-Ye-Kitaev模型和随机张量网络模型在内的玩具模型来研究黑洞内部物理。黑洞是具有强引力效应的时空几何的简单例子。落入黑洞的信息的命运是一个超越广义相对论的具体问题。该项目的目标是对如何描述黑洞内部的时空几何以及如何从外部检索内部信息有更微观的理解。该项目的第二个方向是利用纠缠-引力对应来研究量子信息理论中的新问题。例如,如何定义和探测一般量子多体系统中的因果结构?如何衡量量子动力学的复杂性?量子计算机如何帮助学习量子系统的物理特性?量子信息理论工具和引力理论的见解相结合,为解决这些基本问题带来了新的方法,这些问题将在本项目中进行研究。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Holevo information and ensemble theory of gravity
Holevo信息与引力系综理论
  • DOI:
    10.1007/jhep02(2022)056
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Qi, Xiao-Liang;Shangnan, Zhou;Yang, Zhenbin
  • 通讯作者:
    Yang, Zhenbin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaoliang Qi其他文献

An ATP-activated spatiotemporally controlled hydrogel prodrug system for treating multidrug-resistant bacteria-infected pressure ulcers
一种用于治疗耐多药细菌感染的压疮的 ATP 激活的时空控制水凝胶前药系统
  • DOI:
    10.1016/j.bioactmat.2024.11.029
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    20.300
  • 作者:
    Xiaoliang Qi;Yajing Xiang;Ying Li;Jiajia Wang;Yuxi Chen;Yulong Lan;Jinsong Liu;Jianliang Shen
  • 通讯作者:
    Jianliang Shen
Activation of AMP-activated Protein Kinase by Metformin Inhibits Dedifferentiation of Platelet-derived Growth Factor-BB-induced Vascular Smooth Muscle Cells to Improve Arterial Remodeling in Cirrhotic Portal Hypertension
二甲双胍激活 AMP 激活的蛋白激酶抑制血小板衍生生长因子-BB 诱导的血管平滑肌细胞去分化以改善肝硬化门静脉高压症中的动脉重构
  • DOI:
    10.1016/j.jcmgh.2025.101487
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Guangbo Wu;Qiang Fan;Min Chen;Guqing Luo;Zhenghao Wu;Jinbo Zhao;Jiayun Lin;Chihao Zhang;Hongjie Li;Xiaoliang Qi;Haizhong Huo;Lei Zheng;Meng Luo
  • 通讯作者:
    Meng Luo
Inorganic–organic hybrid nanomaterials for photothermal antibacterial therapy
用于光热抗菌治疗的无机-有机杂化纳米材料
  • DOI:
    10.1016/j.ccr.2023.215426
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    23.500
  • 作者:
    Xiaoliang Qi;Yajing Xiang;Erya Cai;XinXin Ge;Xiaojing Chen;Wei Zhang;Zhangping Li;Jianliang Shen
  • 通讯作者:
    Jianliang Shen
A novel noninvasive assessment of portal pressure from computational biofluid mechanics in patients with portal hypertension
  • DOI:
    10.1186/s13063-025-08818-6
  • 发表时间:
    2025-05-21
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Lei Zheng;Guangbo Wu;Jiayun Lin;Hongjie Li;Chihao Zhang;Zhifeng Zhao;Min Chen;Zhenghao Wu;Guqing Luo;Qiang Fan;Xiaoliang Qi;Haizhong Huo;Longci Sun;Meng Luo
  • 通讯作者:
    Meng Luo
Telmisartan relieves liver fibrosis and portal hypertension by improving vascular remodeling and sinusoidal dysfunction.
替米沙坦通过改善血管重塑和肝窦功能障碍来缓解肝纤维化和门静脉高压。
  • DOI:
    10.1016/j.ejphar.2021.174713
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Lei Zheng;Zhifeng Zhao;Jiayun Lin;Hongjie Li;Guangbo Wu;Xiaoliang Qi;Xiaolou Lou;Yongyang Bao;Haizhong Huo;Meng Luo
  • 通讯作者:
    Meng Luo

Xiaoliang Qi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaoliang Qi', 18)}}的其他基金

CQIS: Quantum Chaos and Quantum Gravity from Entanglement
CQIS:纠缠中的量子混沌和量子引力
  • 批准号:
    1720504
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CAREER: Theoretical Investigation of Interacting Topological States of Matter
职业:物质相互作用拓扑态的理论研究
  • 批准号:
    1151786
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Quantum Dynamics and Quantum Chaos
量子动力学和量子混沌
  • 批准号:
    2894416
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Conference: Random matrices from quantum chaos to the Riemann zeta function.
会议:从量子混沌到黎曼 zeta 函数的随机矩阵。
  • 批准号:
    2306332
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Eigenfunction Asymptotics and Quantum Chaos
本征函数渐进和量子混沌
  • 批准号:
    RGPIN-2020-04700
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Chaos and coarse-graining in holography: towards a new paradigm for quantum gravity
全息术中的混沌和粗粒度:迈向量子引力的新范式
  • 批准号:
    EP/X030334/1
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Grant
Novel quantum signatures of chaos
混沌的新颖量子特征
  • 批准号:
    547781-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis of quantum chaos on sequences of growing graphs
生长图序列上的量子混沌分析
  • 批准号:
    22K03405
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel quantum signatures of chaos
混沌的新颖量子特征
  • 批准号:
    547781-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Topics in exponential mixing of Anosov flow and quantum chaos
阿诺索夫流和量子混沌指数混合的主题
  • 批准号:
    21H00994
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
From quantum chaos to collective transport in plasmas
从量子混沌到等离子体中的集体传输
  • 批准号:
    ST/T00388X/1
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Fellowship
From Number Theory to Quantum Chaos on Hyperbolic Lattices
从数论到双曲晶格上的量子混沌
  • 批准号:
    563152-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了