Uniform Distribution and Harmonic Analysis
均匀分布和谐波分析
基本信息
- 批准号:1665007
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project deals with the fundamental problem of approximating continuous objects by discrete ones and evaluating the errors that inevitably arise in the process. Questions of this kind come up in most branches of mathematics: probability, approximation theory, number theory, combinatorics, and discrete geometry, as well as in any discipline of science, engineering, or finance that demands computations of multivariate integrals. A number of less obvious and more profound connections have been discovered recently: some have already been formalized and understood, while others are only heuristic and await further research. Almost every pivotal development in uniform distribution theory, the focus of this project, has exploited applications of real analysis, functional analysis, and especially harmonic analysis. At the same time, numerous modern methods of harmonic analysis that were historically overlooked by experts in other fields that make use of uniform distribution theory are only starting to gain footholds in their areas. Many questions of utmost importance to uniform distribution theory, especially in higher dimensions, remain wide open. The questions under investigation in this project include the longstanding problem of precise asymptotics of optimal discrepancy in higher dimensions, one-bit compressed sensing, embeddings of metric spaces, interplay between discrepancy and energy minimization, constructions of well-distributed point sets (low-discrepancy, cubature, energy-minimizing, lattices), discrepancy estimates and numerical integration in function spaces, exploring the effect of geometry on uniform distribution properties, and problems of discrete geometry (tessellations, coverings, packings). Progress on these questions has to be tightly intertwined with advances on important problems and conjectures in analysis and other fields, gluing together a mosaic of apparently disconnected questions and topics. The outcomes of the project are expected to impact several areas of mathematics, enriching and cross-fertilizing them with new results, ideas, and methods.
本研究项目涉及用离散对象近似连续对象的基本问题,并评估在此过程中不可避免地出现的误差。这类问题出现在数学的大多数分支中:概率论、逼近论、数论、组合学和离散几何,以及任何需要计算多元积分的科学、工程或金融学科。 最近发现了许多不太明显但更深刻的联系:有些已经被形式化和理解,而另一些只是启发式的,等待进一步的研究。 几乎每一个关键的发展,在均匀分布理论,这个项目的重点,利用应用程序的真实的分析,功能分析,特别是谐波分析。与此同时,历史上被其他领域的专家忽视的许多现代谐波分析方法,利用均匀分布理论,才开始在他们的领域站稳脚跟。许多对均匀分布理论至关重要的问题,特别是在更高维度下,仍然悬而未决。该项目研究的问题包括高维最优差异的精确渐近性问题、一比特压缩感知、度量空间的嵌入、差异与能量最小化之间的相互作用、均匀分布点集的构造(低差异、体积、能量最小化、网格)、函数空间中的差异估计和数值积分,探索几何对均匀分布性质的影响,以及离散几何问题(镶嵌,覆盖,包装)。在这些问题上的进展必须与分析和其他领域的重要问题和成就的进展紧密交织在一起,把一个明显不相关的问题和主题拼凑在一起。该项目的成果预计将影响数学的几个领域,用新的结果,思想和方法丰富和交叉它们。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Stolarsky Principle and Energy Optimization on the Sphere
- DOI:10.1007/s00365-017-9412-4
- 发表时间:2018-08-01
- 期刊:
- 影响因子:2.7
- 作者:Bilyk, Dmitriy;Dai, Feng;Matzke, Ryan
- 通讯作者:Matzke, Ryan
Potential theory with multivariate kernels
多元核势理论
- DOI:10.1007/s00209-022-03000-z
- 发表时间:2022
- 期刊:
- 影响因子:0.8
- 作者:Bilyk, Dmitriy;Ferizović, Damir;Glazyrin, Alexey;Matzke, Ryan W.;Park, Josiah;Vlasiuk, Oleksandr
- 通讯作者:Vlasiuk, Oleksandr
Energy on spheres and discreteness of minimizing measures
球体上的能量和最小化措施的离散性
- DOI:10.1016/j.jfa.2021.108995
- 发表时间:2021
- 期刊:
- 影响因子:1.7
- 作者:Bilyk, Dmitriy;Glazyrin, Alexey;Matzke, Ryan;Park, Josiah;Vlasiuk, Oleksandr
- 通讯作者:Vlasiuk, Oleksandr
Positive definiteness and the Stolarsky invariance principle
正定性和斯托拉斯基不变性原理
- DOI:10.1016/j.jmaa.2022.126220
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Bilyk, Dmitriy;Matzke, Ryan W.;Vlasiuk, Oleksandr
- 通讯作者:Vlasiuk, Oleksandr
Geodesic distance Riesz energy on the sphere
球体上的测地距离 Riesz 能量
- DOI:10.1090/tran/7711
- 发表时间:2019
- 期刊:
- 影响因子:1.3
- 作者:Bilyk, Dmitriy;Dai, Feng
- 通讯作者:Dai, Feng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitriy Bilyk其他文献
Fibonacci sets and symmetrization in discrepancy theory
- DOI:
10.1016/j.jco.2011.07.001 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
Dmitriy Bilyk;V.N. Temlyakov;Rui Yu - 通讯作者:
Rui Yu
Distributional estimates for the bilinear Hilbert transform
- DOI:
10.1007/bf02922131 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.500
- 作者:
Dmitriy Bilyk;Loukas Grafakos - 通讯作者:
Loukas Grafakos
A Random Line Intersects $$\mathbb {S}^2$$ in Two Probabilistically Independent Locations
- DOI:
10.1007/s12220-025-02094-1 - 发表时间:
2025-07-07 - 期刊:
- 影响因子:1.500
- 作者:
Dmitriy Bilyk;Alan Chang;Otte Heinävaara;Ryan W. Matzke;Stefan Steinerberger - 通讯作者:
Stefan Steinerberger
The Two-Dimensional Small Ball Inequality and Binary Nets
- DOI:
10.1007/s00041-016-9491-9 - 发表时间:
2016-10-04 - 期刊:
- 影响因子:1.200
- 作者:
Dmitriy Bilyk;Naomi Feldheim - 通讯作者:
Naomi Feldheim
Lower Bounds for the Directional Discrepancy with Respect to an Interval of Rotations
- DOI:
10.1007/s00041-023-10005-7 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:1.200
- 作者:
Dmitriy Bilyk;Michelle Mastrianni - 通讯作者:
Michelle Mastrianni
Dmitriy Bilyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitriy Bilyk', 18)}}的其他基金
Optimal Measures and Point Configurations: A Harmonic Analysis Approach
最佳测量和点配置:谐波分析方法
- 批准号:
2054606 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
The Discrepancy Theory and the Small Ball Conjecture
差异理论和小球猜想
- 批准号:
0801036 - 财政年份:2008
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似海外基金
A design method to improve space harmonic distribution of fractional-slot concentrated winding motors with magnetic saturation
改善磁饱和分数槽集中绕组电机空间谐波分布的设计方法
- 批准号:
18K13745 - 财政年份:2018
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Analyses of Propagation and Expansion Phenomena of Harmonics in Distribution System and Development of Harmonic Sources Estimation Method and Harmonic Suppression Method
配电系统谐波传播扩展现象分析及谐波源估计方法和谐波抑制方法的发展
- 批准号:
16K06241 - 财政年份:2016
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on Harmonic Analysis of Distribution Network Connected Distributed Generators
配电网并网分布式发电机谐波分析研究
- 批准号:
19560285 - 财政年份:2007
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of Harmonic Reduction Effect in Distribution Line Due to Its Reaction Among Power Semiconductor Circuits
功率半导体电路间反应的配电线路谐波抑制效果研究
- 批准号:
16560260 - 财政年份:2004
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Analysis of Vortex Sheet Evolution and Value Distribution of Harmonic Maps into Hadamard Surfaces
涡片演化的几何分析和哈达玛曲面调和图的值分布
- 批准号:
0103888 - 财政年份:2001
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Stochastic analysis of sub harmonic functions and its application to value distribution theory
次谐波函数的随机分析及其在价值分布理论中的应用
- 批准号:
10640167 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of high voltage harmonic measuring instrument system for distribution line using optical voltage and current sensor
采用光学电压电流传感器的配电线路高压谐波测量仪表系统的研制
- 批准号:
10650289 - 财政年份:1998
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
SGER: A DSP Based Active Power Filter to Cancel Harmonic Currents in Low Voltage Electric Power Distribution Systems
SGER:基于 DSP 的有源电力滤波器,用于消除低压配电系统中的谐波电流
- 批准号:
9712596 - 财政年份:1997
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Research on a shunt active filter for damping of harmonic propagation in power distribution systems
并联有源滤波器抑制配电系统谐波传播的研究
- 批准号:
08455135 - 财政年份:1996
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Design Methods for Harmonic Voltage Reductionon Electric Power Distribution Systems (REU Supplement)
配电系统谐波降压设计方法的发展(REU 补充)
- 批准号:
8915112 - 财政年份:1989
- 资助金额:
$ 18万 - 项目类别:
Standard Grant