Optimal Measures and Point Configurations: A Harmonic Analysis Approach

最佳测量和点配置:谐波分析方法

基本信息

  • 批准号:
    2054606
  • 负责人:
  • 金额:
    $ 26.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Optimal point configurations and distributions arise in numerous areas in science applications including sampling of data, signal processing, equilibria of particles and charges, crystal formation, population distribution, discretization of surfaces, and coding theory. They are also extremely useful in numerical analysis and in fields that call for numerical computation of high dimensional integrals such as finance, often yielding better results than Monte Carlo methods. Studied within the framework of this project will be optimal point configurations and measures through the prism of harmonic analysis. The project will also study fundamental questions regarding uniform distribution of energy minimizers; determination of optimal distributions; discrete clustering phenomena; the interplay between geometry and uniform distribution; connections between discrepancy and energy minimization. In addition, the project will study related questions in applied harmonic analysis, compressed sensing, and frame theory. The results and topics of this project will be disseminated through publications and presentations, and young mathematicians will actively be mentored. The quality of a point distribution may be expressed or measured in a variety of different ways depending on the problem at hand. Examples include lattices, cubature formulas, codes, packings, and random point processes. This project is focused on two central inter-connected concepts, both of which quantify the uniformity of distributions: discrepancy and energy minimization. The former compares a given distribution with the uniform measure by looking at the errors on a certain class of test sets or test functions. The latter interprets points as “particles”, which interact according to a certain potential. While progress in these subjects often relies on methods and ideas of harmonic analysis, many of these connections have only been discovered recently. This leads to natural cross-fertilization: analysis provides the necessary tools, and at the same time it is enriched with new questions. The project will study several grand topics related to discrepancy and energy optimization including clustering of minimizers, attractive-repulsive energies and their relations to signal processing and applied harmonic analysis (tight frames, SIC-POVMs, mutually unbiased bases), discrete and metric geometry (equiangular lines, distance integrals), tessellations of spheres and their relation to discrepancy, one-bit compressed sensing, and embedding of metric spaces, direct interplay between energy and discrepancy and its applications to various questions and conjectures, the long standing open question of the exact asymptotics of discrepancy with respect to axis-parallel rectangles, as well as sibling questions in harmonic analysis, approximation and probability theory. Ubiquitous connections between the subjects bring together a variety of questions into an integral project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
最佳点配置和分布出现在科学应用的许多领域,包括数据采样、信号处理、粒子和电荷的平衡、晶体形成、布居分布、表面离散化和编码理论。它们在数值分析和金融等需要数值计算高维积分的领域也非常有用,通常比蒙特卡罗方法产生更好的结果。在这个项目的框架内,将通过调和分析的棱镜来研究最优化的点配置和措施。该项目还将研究关于能量最小化的均匀分布、最佳分布的确定、离散聚集现象、几何形状与均匀分布之间的相互作用、差异与能量最小化之间的联系等基本问题。此外,该项目还将研究应用谐波分析、压缩传感和框架理论中的相关问题。该项目的成果和主题将通过出版物和演示文稿传播,青年数学家将得到积极的指导。根据手头的问题,可以用各种不同的方式来表示或测量点分布的质量。例如格子、立方公式、编码、包装和随机点过程。这个项目的重点是两个相互关联的核心概念,这两个概念都量化了分布的一致性:差异和能量最小化。前者通过查看某一类测试集或测试函数上的误差,将给定的分布与均匀度量进行比较。后者将点解释为“粒子”,它们按照一定的势能相互作用。虽然这些学科的进展往往依赖于调和分析的方法和思想,但其中许多联系是最近才被发现的。这导致了自然的交叉受精:分析提供了必要的工具,同时也丰富了新的问题。该项目将研究与差异和能量优化有关的几个大主题,包括极小项的聚集,吸引-排斥能量及其与信号处理和应用调和分析的关系(紧框架,SIC-POVM,相互无偏的基),离散和度量几何(等角线,距离积分),球体的镶嵌及其与差异的关系,一比特压缩传感,度量空间的嵌入,能量和差异之间的直接相互作用及其在各种问题和猜想中的应用,关于轴-平行矩形的差异的精确渐近的长期悬而未决的问题,以及调和分析、近似和概率理论中的兄弟问题。主题之间无处不在的联系将各种问题汇聚到一个完整的项目中。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal measures for $p$-frame energies on spheres
球体上 $p$ 框架能量的最佳测量
  • DOI:
    10.4171/rmi/1329
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bilyk, Dmitriy;Glazyrin, Alexey;Matzke, Ryan;Park, Josiah;Vlasiuk, Oleksandr
  • 通讯作者:
    Vlasiuk, Oleksandr
Positive definiteness and the Stolarsky invariance principle
正定性和斯托拉斯基不变性原理
Potential theory with multivariate kernels
多元核势理论
  • DOI:
    10.1007/s00209-022-03000-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Bilyk, Dmitriy;Ferizović, Damir;Glazyrin, Alexey;Matzke, Ryan W.;Park, Josiah;Vlasiuk, Oleksandr
  • 通讯作者:
    Vlasiuk, Oleksandr
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmitriy Bilyk其他文献

Fibonacci sets and symmetrization in discrepancy theory
  • DOI:
    10.1016/j.jco.2011.07.001
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Dmitriy Bilyk;V.N. Temlyakov;Rui Yu
  • 通讯作者:
    Rui Yu
Distributional estimates for the bilinear Hilbert transform
  • DOI:
    10.1007/bf02922131
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Dmitriy Bilyk;Loukas Grafakos
  • 通讯作者:
    Loukas Grafakos
A Random Line Intersects $$\mathbb {S}^2$$ in Two Probabilistically Independent Locations
  • DOI:
    10.1007/s12220-025-02094-1
  • 发表时间:
    2025-07-07
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Dmitriy Bilyk;Alan Chang;Otte Heinävaara;Ryan W. Matzke;Stefan Steinerberger
  • 通讯作者:
    Stefan Steinerberger
The Two-Dimensional Small Ball Inequality and Binary Nets
Lower Bounds for the Directional Discrepancy with Respect to an Interval of Rotations

Dmitriy Bilyk的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmitriy Bilyk', 18)}}的其他基金

Riviere-Fabes Symposium
里维埃-法贝斯研讨会
  • 批准号:
    2000940
  • 财政年份:
    2020
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Standard Grant
Uniform Distribution and Harmonic Analysis
均匀分布和谐波分析
  • 批准号:
    1665007
  • 财政年份:
    2017
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Continuing Grant
Discrepancy Theory and Analysis
差异理论与分析
  • 批准号:
    1260516
  • 财政年份:
    2012
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Standard Grant
Discrepancy Theory and Analysis
差异理论与分析
  • 批准号:
    1101519
  • 财政年份:
    2011
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Standard Grant
The Discrepancy Theory and the Small Ball Conjecture
差异理论和小球猜想
  • 批准号:
    0801036
  • 财政年份:
    2008
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Continuing Grant
Group Actions, Rigidity, and Invariant Measures
群体行动、刚性和不变措施
  • 批准号:
    2400191
  • 财政年份:
    2024
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Standard Grant
Non-tariff measures and the Global Value Chains
非关税措施和全球价值链
  • 批准号:
    24K16361
  • 财政年份:
    2024
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Continuing Grant
Conference: Geometry of Measures and Free Boundaries
会议:测量几何和自由边界
  • 批准号:
    2403698
  • 财政年份:
    2024
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Standard Grant
Estimating Risk Measures, with Applications to Finance and Nuclear Safety
评估风险措施,并应用于金融和核安全
  • 批准号:
    2345330
  • 财政年份:
    2024
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Standard Grant
Our health counts: population-based measures of urban Indigenous health determinants, health status, and health care access across two cities in New Brunswick
我们的健康很重要:新不伦瑞克省两个城市的城市土著健康决定因素、健康状况和医疗保健获取情况的基于人口的衡量标准
  • 批准号:
    489076
  • 财政年份:
    2023
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Operating Grants
Primary care quality for older adults: practice-based quality measures derived from a RAND/UCLA appropriateness method study
老年人初级保健质量:源自兰德/加州大学洛杉矶分校适当性方法研究的基于实践的质量衡量标准
  • 批准号:
    495174
  • 财政年份:
    2023
  • 资助金额:
    $ 26.59万
  • 项目类别:
Engaging Patient and Caregivers in Using Patient-reported Outcomes Measures in Pediatric Clinical Care for Asthma
让患者和护理人员参与儿科哮喘儿科临床护理中患者报告的结果测量
  • 批准号:
    495593
  • 财政年份:
    2023
  • 资助金额:
    $ 26.59万
  • 项目类别:
Development and validation of a composite measure of physical function using a battery of performance-based measures: A longitudinal analyses of the Canadian Longitudinal Study on Aging
使用一系列基于表现的测量方法开发和验证身体机能的综合测量方法:加拿大老龄化纵向研究的纵向分析
  • 批准号:
    499193
  • 财政年份:
    2023
  • 资助金额:
    $ 26.59万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了