Discrepancy Theory and Analysis
差异理论与分析
基本信息
- 批准号:1260516
- 负责人:
- 金额:$ 9.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Discrepancy theory studies various forms of the following question: How well can uniform distribution be approximated by a discrete set? This project is devoted to exploring fundamental problems and conjectures of discrepancy theory through the prism of harmonic and functional analysis. The strategic goals of the project are two-fold: to infuse discrepancy theory with new methods stemming from analysis, as well as to enrich the field of analysis with new problems and ideas. The program includes a wide range of problems and topics: understanding the precise behavior of the irregularity of distributions in various function spaces, producing new constructions of various low-discrepancy sets, investigating the correlation between discrepancy estimates and geometry, as well as numerous connections of the field to other areas of mathematics, such as probability and approximation theory.The ideas and questions of discrepancy theory are strongly interlaced with other areas of mathematics: combinatorics, geometry, number theory, probability, approximation theory. Moreover, this field is closely connected to computational mathematics, namely, the methods of numerical integration, and thus, it has direct applications in science, engineering, finance etc. The scientific output of this project will expand and deepen the understanding of the underlying phenomena of discrepancy theory and its relations to other branches of mathematics, as well as yield important applications to science and technology. The results will be broadly disseminated through publications in high-level journals, presentations in conferences, seminars, and colloquia, active collaborations with researchers around the world, a number of educational and mentoring activities.
差异理论研究以下问题的各种形式:离散集能在多大程度上近似均匀分布?该项目致力于通过调和和泛函分析的棱镜探索差异理论的基本问题和猜想。 该项目的战略目标有两个:将差异理论与分析产生的新方法相结合,以及用新问题和新想法丰富分析领域。该计划包括广泛的问题和主题:理解各种函数空间中分布不规则性的精确行为,产生各种低差异集的新构造,研究差异估计与几何之间的相关性,以及该领域与其他数学领域(例如概率论和逼近论)的众多联系。差异理论的思想和问题与其他数学领域密切相关。 数学:组合学、几何学、数论、概率论、逼近论。此外,该领域与计算数学(即数值积分方法)密切相关,因此在科学、工程、金融等领域有直接的应用。该项目的科学成果将扩大和加深对差异理论的基本现象及其与数学其他分支的关系的理解,并对科学和技术产生重要的应用。研究结果将通过高水平期刊上的出版物、会议、研讨会和座谈会中的演讲、与世界各地研究人员的积极合作以及一系列教育和指导活动来广泛传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitriy Bilyk其他文献
Fibonacci sets and symmetrization in discrepancy theory
- DOI:
10.1016/j.jco.2011.07.001 - 发表时间:
2012-02-01 - 期刊:
- 影响因子:
- 作者:
Dmitriy Bilyk;V.N. Temlyakov;Rui Yu - 通讯作者:
Rui Yu
Distributional estimates for the bilinear Hilbert transform
- DOI:
10.1007/bf02922131 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.500
- 作者:
Dmitriy Bilyk;Loukas Grafakos - 通讯作者:
Loukas Grafakos
A Random Line Intersects $$\mathbb {S}^2$$ in Two Probabilistically Independent Locations
- DOI:
10.1007/s12220-025-02094-1 - 发表时间:
2025-07-07 - 期刊:
- 影响因子:1.500
- 作者:
Dmitriy Bilyk;Alan Chang;Otte Heinävaara;Ryan W. Matzke;Stefan Steinerberger - 通讯作者:
Stefan Steinerberger
The Two-Dimensional Small Ball Inequality and Binary Nets
- DOI:
10.1007/s00041-016-9491-9 - 发表时间:
2016-10-04 - 期刊:
- 影响因子:1.200
- 作者:
Dmitriy Bilyk;Naomi Feldheim - 通讯作者:
Naomi Feldheim
Lower Bounds for the Directional Discrepancy with Respect to an Interval of Rotations
- DOI:
10.1007/s00041-023-10005-7 - 发表时间:
2023-05-01 - 期刊:
- 影响因子:1.200
- 作者:
Dmitriy Bilyk;Michelle Mastrianni - 通讯作者:
Michelle Mastrianni
Dmitriy Bilyk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitriy Bilyk', 18)}}的其他基金
Optimal Measures and Point Configurations: A Harmonic Analysis Approach
最佳测量和点配置:谐波分析方法
- 批准号:
2054606 - 财政年份:2021
- 资助金额:
$ 9.16万 - 项目类别:
Standard Grant
Uniform Distribution and Harmonic Analysis
均匀分布和谐波分析
- 批准号:
1665007 - 财政年份:2017
- 资助金额:
$ 9.16万 - 项目类别:
Continuing Grant
The Discrepancy Theory and the Small Ball Conjecture
差异理论和小球猜想
- 批准号:
0801036 - 财政年份:2008
- 资助金额:
$ 9.16万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 9.16万 - 项目类别:
Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 9.16万 - 项目类别:
Standard Grant
Conference: Pittsburgh Links among Analysis and Number Theory (PLANT)
会议:匹兹堡分析与数论之间的联系 (PLANT)
- 批准号:
2334874 - 财政年份:2024
- 资助金额:
$ 9.16万 - 项目类别:
Standard Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
- 批准号:
24K06777 - 财政年份:2024
- 资助金额:
$ 9.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Harmonic Analysis, Ergodic Theory and Convex Geometry
职业:调和分析、遍历理论和凸几何
- 批准号:
2236493 - 财政年份:2023
- 资助金额:
$ 9.16万 - 项目类别:
Continuing Grant
Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
- 批准号:
23H01276 - 财政年份:2023
- 资助金额:
$ 9.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a Causality Analysis Method for Point Processes Based on Nonlinear Dynamical Systems Theory and Elucidation of the Representation of Information Processing in the Brain
基于非线性动力系统理论的点过程因果分析方法的发展及大脑信息处理表征的阐明
- 批准号:
22KJ2815 - 财政年份:2023
- 资助金额:
$ 9.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Mathematical Structure Analysis of Origami Metamaterials Using Dynamical Systems Theory
利用动力系统理论进行折纸超材料的数学结构分析
- 批准号:
23KJ0682 - 财政年份:2023
- 资助金额:
$ 9.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 9.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Spectral theory of Schrodinger forms and Stochastic analysis for weighted Markov processes
薛定谔形式的谱论和加权马尔可夫过程的随机分析
- 批准号:
23K03152 - 财政年份:2023
- 资助金额:
$ 9.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




