Harmonic and Functional Analysis of Wavelet and Frame Expansions

小波和框架展开的谐波和泛函分析

基本信息

  • 批准号:
    1665056
  • 负责人:
  • 金额:
    $ 17.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

The project involves research and education activities in harmonic and functional analysis concerning the mathematical theory of multidimensional wavelet and frame expansions. Wavelet and frame theory is not only mathematically interesting in its own right, but this area has found many applications outside of pure mathematics. These range from applied and computational harmonic analysis to signal processing and data compression. Some well known examples where wavelets are a key tool include the JPEG 2000 digital image standard and fingerprint compression for data storage. The broader impacts of the project deal with education and training of undergraduate and graduate students in the area of harmonic analysis and wavelets. There are three components of this activity which are integrally connected with the research aims of this project. The first is advising and training of Ph.D. students in the research directions described in this project. The second educational goal is a support for student-run Stochastic/Functional Analysis seminar, which will provide additional, critical training for graduate students interested in doing research in harmonic and functional analysis. The third aim is to recruit advanced undergraduate students to research projects on frames. The project aims at answering some of the most fundamental questions in wavelet and frame theory. One of the main research directions of the project is the development of techniques for construction of well-localized orthogonal wavelets for large classes of nonisotropic expanding dilations. A closely related complementary topic is the study of wavelets for nonexpanding dilations. The problem of characterizing dilations for which there exist minimally supported frequency (MSF) wavelets is connected with the geometry of numbers; more specifically, with the estimate on the number of lattice points of dilates of balls. An analogous problem of classifying dilations for which there exist well-localized wavelets has implications in the study of nonisotropic function spaces. Another direction of the project is the construction of frames with desired properties, such as with prescribed norms and frame operator. This line of research is closely related with the infinite-dimensional generalizations of the Schur-Horn theorem. The problem of characterizing diagonals of self-adjoint operators has not only implications for frame theory, but it has also been extensively studied in the setting of von Neumann algebras. Finally, the problem of characterizing tight fusion frame sequences is connected with algebraic combinatorics methods that are typically not employed in analysis.
该项目涉及关于多维小波和框架展开的数学理论的调和和泛函分析方面的研究和教育活动。小波和框架理论不仅本身在数学上很有趣,而且这个领域在纯数学之外还有很多应用。这些课程的范围从应用和计算的谐波分析到信号处理和数据压缩。小波是关键工具的一些众所周知的例子包括JPEG2000数字图像标准和用于数据存储的指纹压缩。该项目的更广泛影响涉及本科生和研究生在调和分析和小波领域的教育和培训。这项活动有三个组成部分,它们与本项目的研究目标密切相关。第一个是在这个项目中描述的研究方向上为博士生提供建议和培训。第二个教育目标是支持学生举办的随机/泛函分析研讨会,该研讨会将为有兴趣从事调和和泛函分析研究的研究生提供额外的关键培训。第三个目标是招收高级本科生参加框架研究项目。该项目旨在回答小波和框架理论中的一些最基本的问题。该项目的主要研究方向之一是发展构造大类非各向同性伸缩的局部化良好的正交小波的技术。一个密切相关的互补主题是研究非扩张伸缩的小波。刻画存在最小支撑频率(MSF)小波的膨胀的问题与数的几何有关;更具体地说,与球膨胀的格点个数的估计有关。对存在良好局部化小波的伸缩进行分类的类似问题在非各向同性函数空间的研究中具有重要意义。该项目的另一个方向是建造具有所需属性的框架,例如具有规定的规范和框架操作器。这一研究方向与Schur-Horn定理的无限维推广密切相关。自伴算子的对角线刻画问题不仅在框架理论中有重要意义,而且在von Neumann代数中也得到了广泛的研究。最后,紧融合帧序列的特征问题与分析中通常不使用的代数组合学方法有关。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Open problems in wavelet theory
小波理论中的开放问题
The Kadison-Singer problem
卡迪森-辛格问题
On syndetic Riesz sequences
关于联合 Riesz 序列
  • DOI:
    10.1007/s11856-019-1903-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Bownik, Marcin;Londner, Itay
  • 通讯作者:
    Londner, Itay
Wavelets on compact abelian groups
紧阿贝尔群上的小波
A Measurable Selector in Kadison’s Carpenter’s Theorem
卡迪森卡彭特定理中的可测选择器
  • DOI:
    10.4153/s0008414x19000373
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bownik, Marcin;Szyszkowski, Marcin
  • 通讯作者:
    Szyszkowski, Marcin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcin Bownik其他文献

Extrapolation and Factorization of matrix weights
矩阵权重的外推和因式分解
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik;D. Cruz
  • 通讯作者:
    D. Cruz
Erratum to: Atomic and molecular decompositions of anisotropic Besov spaces
  • DOI:
    10.1007/s00209-012-1130-9
  • 发表时间:
    2013-02-02
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Marcin Bownik
  • 通讯作者:
    Marcin Bownik
Characterization of sequences of frame norms
框架规范序列的表征
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik;J. Jasper
  • 通讯作者:
    J. Jasper
Anisotropic Hardy spaces and wavelets
Intersection of dilates of shift-invariant spaces
  • DOI:
    10.1090/s0002-9939-08-09682-2
  • 发表时间:
    2008-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik
  • 通讯作者:
    Marcin Bownik

Marcin Bownik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcin Bownik', 18)}}的其他基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
Harmonic and Functional Analysis of Wavelet and Frame Expansions
小波和框架展开的谐波和泛函分析
  • 批准号:
    1956395
  • 财政年份:
    2020
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    1265711
  • 财政年份:
    2013
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Multidimensional wavelets in non-isotropic function spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0653881
  • 财政年份:
    2007
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
Multidimensional Wavelets in Non-Isotropic Function Spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0441817
  • 财政年份:
    2003
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
Multidimensional Wavelets in Non-Isotropic Function Spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0200080
  • 财政年份:
    2002
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
Harmonic and Functional Analysis of Wavelet and Frame Expansions
小波和框架展开的谐波和泛函分析
  • 批准号:
    1956395
  • 财政年份:
    2020
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
EPSRC-Royal Society fellowship engagement (2012): From Spectra to Sampling - Functional Analysis meets Applied Harmonic Analysis
EPSRC-皇家学会奖学金参与(2012 年):从光谱到采样 - 函数分析与应用谐波分析的结合
  • 批准号:
    EP/L003457/1
  • 财政年份:
    2013
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Fellowship
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    1265711
  • 财政年份:
    2013
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2012
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
  • 批准号:
    1201295
  • 财政年份:
    2012
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Continuing Grant
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Discovery Grants Program - Individual
Functional and harmonic analysis of function spaces: synthesis, development and applications
函数空间的泛函和调和分析:综合、开发和应用
  • 批准号:
    DP0881037
  • 财政年份:
    2008
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Discovery Projects
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Discovery Grants Program - Individual
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了