Harmonic and Functional Analysis of Wavelet and Frame Expansions

小波和框架展开的谐波和泛函分析

基本信息

  • 批准号:
    1956395
  • 负责人:
  • 金额:
    $ 21.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project involves research and education activities in harmonic and functional analysis concerned with the mathematical theory of multi-dimensional wavelet and frame expansions. Wavelet and frame theory is not only mathematically interesting as a subject of study by itself, this area has also found many applications outside of pure mathematics ranging from applied and computational harmonic analysis to signal processing and data compression. Some well-known examples where wavelets are a key tool include the JPEG 2000 digital image standard and fingerprint compression for data storage. The broader impacts of this project include education and training of undergraduate and graduate students in the area of harmonic analysis and wavelets.This project aims to answer some of the most fundamental questions in wavelet and frame theory. One of the main research directions of the project is the development of techniques for the construction of well-localized orthogonal wavelets for large classes of non-isotropic expanding dilations. A closely related complementary topic is the study of wavelets for non-expanding dilations. The problem of characterizing dilations for which there exist minimally supported frequency (MSF) wavelets is connected to the geometry of numbers; more specifically, to the estimate on the number of lattice points of dilates of balls. An analogous problem of classifying dilations for which there exist well-localized wavelets has implications in the study of non-isotropic function spaces. Another direction of the project is the construction of frames with certain desired properties, such as prescribed norms and frame operator. This line of research is closely related to infinite dimensional generalizations of the Schur-Horn theorem. The problem of characterizing diagonals of self-adjoint operators not only has implications for frame theory, it has also been studied extensively in the setting of von Neumann algebras. Finally, the project involves investigating the breakthrough solution of the Kadison-Singer problem with the aim of improving its techniques and obtaining new results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及与多维小波和框架扩展的数学理论有关的谐波和泛函分析的研究和教育活动。小波和框架理论不仅是数学上有趣的研究本身的主题,这一领域也发现了许多应用范围以外的纯数学应用和计算谐波分析的信号处理和数据压缩。小波是关键工具的一些众所周知的例子包括JPEG 2000数字图像标准和用于数据存储的指纹压缩。该项目的更广泛的影响包括教育和培训本科生和研究生在谐波分析和小波领域。该项目旨在回答小波和框架理论中的一些最基本的问题。该项目的主要研究方向之一是为大类非各向同性膨胀膨胀构造良好局部化正交小波的技术的发展。一个密切相关的补充主题是非扩张膨胀的小波的研究。存在最小支持频率(MSF)小波的特征膨胀的问题是连接到几何的数字,更具体地说,对球的膨胀的格点的数量的估计。一个类似的问题,分类膨胀,存在良好的局部化小波的研究中的非各向同性函数空间的影响。该项目的另一个方向是构建具有某些所需属性的框架,例如规定的规范和框架操作符。这条线的研究是密切相关的无限维推广的舒尔-霍恩定理。刻画自伴算子的对角线问题不仅对框架理论有影响,而且在冯诺依曼代数的背景下也得到了广泛的研究。最后,该项目涉及研究Kadison-Singer问题的突破性解决方案,旨在改进其技术并获得新的结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability of iterated dyadic filter banks
迭代二元滤波器组的稳定性
  • DOI:
    10.1016/j.acha.2023.01.006
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bownik, Marcin;Johnson, Brody;McCreary-Ellis, Simon
  • 通讯作者:
    McCreary-Ellis, Simon
Marcinkiewicz Averages of Smooth Orthogonal Projections on Sphere
球体上平滑正交投影的 Marcinkiewicz 平均值
Multiplication-invariant operators and the classification of LCA group frames
乘法不变算子和LCA群框架的分类
  • DOI:
    10.1016/j.jfa.2020.108780
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bownik, Marcin;Iverson, Joseph W.
  • 通讯作者:
    Iverson, Joseph W.
A partial differential equation characterization of anisotropic Hardy spaces
  • DOI:
    10.1002/mana.202100368
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Marcin Bownik;L. Wang
  • 通讯作者:
    Marcin Bownik;L. Wang
Smooth Orthogonal Projections on Riemannian Manifold
  • DOI:
    10.1007/s11118-019-09818-3
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Marcin Bownik;K. Dziedziul;A. Kamont
  • 通讯作者:
    Marcin Bownik;K. Dziedziul;A. Kamont
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcin Bownik其他文献

Extrapolation and Factorization of matrix weights
矩阵权重的外推和因式分解
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik;D. Cruz
  • 通讯作者:
    D. Cruz
Erratum to: Atomic and molecular decompositions of anisotropic Besov spaces
  • DOI:
    10.1007/s00209-012-1130-9
  • 发表时间:
    2013-02-02
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Marcin Bownik
  • 通讯作者:
    Marcin Bownik
Characterization of sequences of frame norms
框架规范序列的表征
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik;J. Jasper
  • 通讯作者:
    J. Jasper
Anisotropic Hardy spaces and wavelets
Intersection of dilates of shift-invariant spaces
  • DOI:
    10.1090/s0002-9939-08-09682-2
  • 发表时间:
    2008-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik
  • 通讯作者:
    Marcin Bownik

Marcin Bownik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcin Bownik', 18)}}的其他基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Harmonic and Functional Analysis of Wavelet and Frame Expansions
小波和框架展开的谐波和泛函分析
  • 批准号:
    1665056
  • 财政年份:
    2017
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    1265711
  • 财政年份:
    2013
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Multidimensional wavelets in non-isotropic function spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0653881
  • 财政年份:
    2007
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Multidimensional Wavelets in Non-Isotropic Function Spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0441817
  • 财政年份:
    2003
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Multidimensional Wavelets in Non-Isotropic Function Spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0200080
  • 财政年份:
    2002
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Harmonic and Functional Analysis of Wavelet and Frame Expansions
小波和框架展开的谐波和泛函分析
  • 批准号:
    1665056
  • 财政年份:
    2017
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
EPSRC-Royal Society fellowship engagement (2012): From Spectra to Sampling - Functional Analysis meets Applied Harmonic Analysis
EPSRC-皇家学会奖学金参与(2012 年):从光谱到采样 - 函数分析与应用谐波分析的结合
  • 批准号:
    EP/L003457/1
  • 财政年份:
    2013
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Fellowship
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    1265711
  • 财政年份:
    2013
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2012
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
  • 批准号:
    1201295
  • 财政年份:
    2012
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
Functional and harmonic analysis of function spaces: synthesis, development and applications
函数空间的泛函和调和分析:综合、开发和应用
  • 批准号:
    DP0881037
  • 财政年份:
    2008
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Projects
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了