Harmonic and Functional Analysis of Wavelet and Frame Expansions

小波和框架展开的谐波和泛函分析

基本信息

  • 批准号:
    1956395
  • 负责人:
  • 金额:
    $ 21.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

This project involves research and education activities in harmonic and functional analysis concerned with the mathematical theory of multi-dimensional wavelet and frame expansions. Wavelet and frame theory is not only mathematically interesting as a subject of study by itself, this area has also found many applications outside of pure mathematics ranging from applied and computational harmonic analysis to signal processing and data compression. Some well-known examples where wavelets are a key tool include the JPEG 2000 digital image standard and fingerprint compression for data storage. The broader impacts of this project include education and training of undergraduate and graduate students in the area of harmonic analysis and wavelets.This project aims to answer some of the most fundamental questions in wavelet and frame theory. One of the main research directions of the project is the development of techniques for the construction of well-localized orthogonal wavelets for large classes of non-isotropic expanding dilations. A closely related complementary topic is the study of wavelets for non-expanding dilations. The problem of characterizing dilations for which there exist minimally supported frequency (MSF) wavelets is connected to the geometry of numbers; more specifically, to the estimate on the number of lattice points of dilates of balls. An analogous problem of classifying dilations for which there exist well-localized wavelets has implications in the study of non-isotropic function spaces. Another direction of the project is the construction of frames with certain desired properties, such as prescribed norms and frame operator. This line of research is closely related to infinite dimensional generalizations of the Schur-Horn theorem. The problem of characterizing diagonals of self-adjoint operators not only has implications for frame theory, it has also been studied extensively in the setting of von Neumann algebras. Finally, the project involves investigating the breakthrough solution of the Kadison-Singer problem with the aim of improving its techniques and obtaining new results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及谐波和泛函分析的研究和教育活动,涉及多维小波和框架展开的数学理论。小波和框架理论不仅在数学上是一门有趣的研究课题,而且在纯数学之外也有许多应用,从应用和计算谐波分析到信号处理和数据压缩。小波作为关键工具的一些著名示例包括JPEG 2000数字图像标准和用于数据存储的指纹压缩。这个项目更广泛的影响包括教育和培训本科生和研究生在谐波分析和小波领域。本项目旨在回答小波和框架理论中一些最基本的问题。该项目的主要研究方向之一是开发用于构造大类别非各向同性膨胀的良好定域正交小波的技术。一个密切相关的补充课题是研究非膨胀膨胀的小波。存在最小支持频率(MSF)小波的膨胀特性问题与数的几何性质有关;更具体地说,是对膨胀球的点阵数的估计。一类具有良好定域小波的膨胀分类问题在非各向同性函数空间的研究中具有重要意义。项目的另一个方向是建造具有一定期望属性的框架,如规定规范和框架算子。这条研究路线与舒尔-霍恩定理的无限维推广密切相关。自伴随算子对角线的刻画问题不仅具有框架理论的意义,而且在冯诺依曼代数的设置中也得到了广泛的研究。最后,该项目涉及研究卡迪逊-辛格问题的突破性解决方案,目的是改进其技术并获得新的结果。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stability of iterated dyadic filter banks
迭代二元滤波器组的稳定性
  • DOI:
    10.1016/j.acha.2023.01.006
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Bownik, Marcin;Johnson, Brody;McCreary-Ellis, Simon
  • 通讯作者:
    McCreary-Ellis, Simon
Marcinkiewicz Averages of Smooth Orthogonal Projections on Sphere
球体上平滑正交投影的 Marcinkiewicz 平均值
Multiplication-invariant operators and the classification of LCA group frames
乘法不变算子和LCA群框架的分类
  • DOI:
    10.1016/j.jfa.2020.108780
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Bownik, Marcin;Iverson, Joseph W.
  • 通讯作者:
    Iverson, Joseph W.
Smooth Orthogonal Projections on Riemannian Manifold
  • DOI:
    10.1007/s11118-019-09818-3
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Marcin Bownik;K. Dziedziul;A. Kamont
  • 通讯作者:
    Marcin Bownik;K. Dziedziul;A. Kamont
Parseval Wavelet Frames on Riemannian Manifold
  • DOI:
    10.1007/s12220-021-00742-w
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik;K. Dziedziul;A. Kamont
  • 通讯作者:
    Marcin Bownik;K. Dziedziul;A. Kamont
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcin Bownik其他文献

Extrapolation and Factorization of matrix weights
矩阵权重的外推和因式分解
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik;D. Cruz
  • 通讯作者:
    D. Cruz
Erratum to: Atomic and molecular decompositions of anisotropic Besov spaces
  • DOI:
    10.1007/s00209-012-1130-9
  • 发表时间:
    2013-02-02
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Marcin Bownik
  • 通讯作者:
    Marcin Bownik
Characterization of sequences of frame norms
框架规范序列的表征
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik;J. Jasper
  • 通讯作者:
    J. Jasper
Anisotropic Hardy spaces and wavelets
Intersection of dilates of shift-invariant spaces
  • DOI:
    10.1090/s0002-9939-08-09682-2
  • 发表时间:
    2008-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marcin Bownik
  • 通讯作者:
    Marcin Bownik

Marcin Bownik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcin Bownik', 18)}}的其他基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Harmonic and Functional Analysis of Wavelet and Frame Expansions
小波和框架展开的谐波和泛函分析
  • 批准号:
    1665056
  • 财政年份:
    2017
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    1265711
  • 财政年份:
    2013
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Multidimensional wavelets in non-isotropic function spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0653881
  • 财政年份:
    2007
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Multidimensional Wavelets in Non-Isotropic Function Spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0441817
  • 财政年份:
    2003
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Multidimensional Wavelets in Non-Isotropic Function Spaces
非各向同性函数空间中的多维小波
  • 批准号:
    0200080
  • 财政年份:
    2002
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant

相似国自然基金

高维数据的函数型数据(functional data)分析方法
  • 批准号:
    11001084
  • 批准年份:
    2010
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
  • 批准号:
    30771013
  • 批准年份:
    2007
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Standard Grant
Harmonic and Functional Analysis of Wavelet and Frame Expansions
小波和框架展开的谐波和泛函分析
  • 批准号:
    1665056
  • 财政年份:
    2017
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
EPSRC-Royal Society fellowship engagement (2012): From Spectra to Sampling - Functional Analysis meets Applied Harmonic Analysis
EPSRC-皇家学会奖学金参与(2012 年):从光谱到采样 - 函数分析与应用谐波分析的结合
  • 批准号:
    EP/L003457/1
  • 财政年份:
    2013
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Fellowship
Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    1265711
  • 财政年份:
    2013
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Descriptive set theory and its relations with functional and harmonic analysis
描述集合论及其与泛函分析和调和分析的关系
  • 批准号:
    1201295
  • 财政年份:
    2012
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Continuing Grant
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2012
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
Functional and harmonic analysis of function spaces: synthesis, development and applications
函数空间的泛函和调和分析:综合、开发和应用
  • 批准号:
    DP0881037
  • 财政年份:
    2008
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Projects
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
Probability measures on topological groups and related problems in harmonic and functional analysis
拓扑群的概率测度及调和与泛函分析中的相关问题
  • 批准号:
    238895-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 21.1万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了