Improving the Accuracy of the Amber Force Field for Biomolecular Simulation
提高生物分子模拟琥珀力场的准确性
基本信息
- 批准号:1665159
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Carlos Simmerling of Stony Brook University (SBU) is supported by an award from the Chemical Theory, Models and Computational Methods program in the Chemistry Division to develop improved computational models of protein molecules. Proteins are the workhorses of biology. They perform more than 20,000 different chemical and mechanical functions in humans, and in all other living organisms. A major challenge in understanding the detailed mechanisms of biology is that proteins are not rigid objects. They move and twist in ways that are essential for their function. This is often where the crucial recognition between molecules takes place, as molecules adapt and pull on each other to confirm that they are interacting with the correct partner, much as two hands adapt during a handshake. These crucial motions can be studied via atomically-detailed computer simulations, using classical approximations to the underlying quantum mechanical forces, known as force fields. Force fields enable the accurate simulation of proteins and their interactions, studies that would otherwise be intractable, even on the largest supercomputers. In addition to fundamental biological studies, accurate force fields are essential for drug discovery and the design of novel nanoscale and biomimetic materials. Professor Simmerling, in collaboration with Qin Wu of Brookhaven National Laboratory, is performing a comprehensive, systematic, physics-based reshaping of one of the most important models used in molecular dynamics simulations of biophysical and biomolecular systems, the Amber force field. The goal of the project is to significantly improve the force field's accuracy and fidelity, while preserving its ability to simulate large biomolecular systems for long times. The newly-parameterized force field will be made freely available for download and use by the simulation community, for use within the most widely-used molecular dynamics simulation codes running on XSEDE supercomputers and small lab clusters. Outreach efforts for the project include regular research and recruitment trips to HBCU institutions, coordinated through the SBU Center for Inclusive Education, and the recruitment of undergraduates from underrepresented minorities to participate in the research.The goal of this project is to systematically and consistently address several key limitations of existing protein classical force fields in order to improve their accuracy without dramatically increasing computational complexity. Current models work in some cases, but fail to agree with experiment in many others, including quantitative reproduction of amino-acid specific properties such as helical propensity. Professor Simmerling, in conjunction with collaborator Qin Wu of Brookhaven National Laboratory, is developing more accurate descriptions of the energy profiles for protein backbone structure and dynamics, with better sequence-dependent structure and dynamics, in order to extend and reparameterize the Amber force field. The project has three principal aims: (1) to improve the description of backbone energetics through fitting to multidimensional scans using high-level QM calculations in solution, (2) to expand the Amber force field parameter library to include non-standard amino acids encountered in biology and those frequently used as experimental probes, and (3) to begin to address longstanding weaknesses in the treatment of short-range van der Waals interactions, by taking advantage of recent advances in quantum mechanical energy decomposition methods to train alternate functional forms. These should improve the ability of the model to reproduce the known influence of side chain rotamer on backbone conformational preference. The new force field models are being validated, documented, and distributed via the widely-used Amber molecular dynamics (MD) simulation program, and can be independently downloaded for use in conjunction with other widely-used MD codes. Education and outreach is focused on recruiting and providing lab research experiences for students from underrepresented groups at SBU, and encouraging student interest in science and research through outreach trips to HBCU institutions.
石溪大学(SBU)的Carlos Simmerling获得了化学学部化学理论、模型和计算方法项目的奖励,以开发改进的蛋白质分子计算模型。蛋白质是生物学的主力。它们在人类和所有其他生物体中执行超过20,000种不同的化学和机械功能。理解生物学的详细机制的一个主要挑战是蛋白质不是刚性的物体。它们移动和扭曲的方式对它们的功能至关重要。这通常是分子之间关键的识别发生的地方,当分子适应并相互拉动以确认它们与正确的伙伴相互作用时,就像握手时两只手适应一样。这些关键的运动可以通过原子细节的计算机模拟来研究,使用对潜在量子力学力(称为力场)的经典近似。力场使蛋白质及其相互作用的精确模拟成为可能,否则即使在最大的超级计算机上也很难进行研究。除了基础生物学研究之外,精确的力场对于药物发现和新型纳米级和仿生材料的设计至关重要。Simmerling教授与布鲁克海文国家实验室的Qin Wu合作,正在对生物物理和生物分子系统的分子动力学模拟中最重要的模型之一Amber力场进行全面、系统、基于物理的重塑。该项目的目标是显著提高力场的准确性和保真度,同时保持其长时间模拟大型生物分子系统的能力。新的参数化力场将免费提供给模拟社区下载和使用,用于在XSEDE超级计算机和小型实验室集群上运行的最广泛使用的分子动力学模拟代码。该项目的推广工作包括定期到HBCU各机构进行研究和招聘,由SBU包容性教育中心协调,并从未被充分代表的少数民族中招募本科生参与研究。该项目的目标是系统和一致地解决现有蛋白质经典力场的几个关键限制,以便在不显着增加计算复杂性的情况下提高其准确性。目前的模型在某些情况下有效,但在许多其他情况下与实验不一致,包括氨基酸特定特性的定量再现,如螺旋倾向。Simmerling教授与布鲁克海文国家实验室的合作者Qin Wu一起,正在开发更准确的蛋白质主链结构和动力学的能量谱描述,更好的序列依赖结构和动力学,以扩展和重新参数化琥珀力场。该项目有三个主要目标:(1)通过在溶液中使用高级QM计算来拟合多维扫描,从而改善对骨干能量学的描述;(2)扩展Amber力场参数库,以包括生物学中遇到的非标准氨基酸和经常用作实验探针的氨基酸;(3)开始解决长期以来在处理短程范德华相互作用方面的弱点。利用量子力学能量分解方法的最新进展来训练替代功能形式。这将提高模型重现已知的侧链旋转体对主链构象偏好的影响的能力。新的力场模型正在通过广泛使用的Amber分子动力学(MD)模拟程序进行验证,记录和分发,并且可以独立下载以与其他广泛使用的MD代码一起使用。教育和外展的重点是为SBU未被充分代表的群体招募和提供实验室研究经验,并通过外展访问HBCU机构来鼓励学生对科学和研究的兴趣。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution
- DOI:10.1021/acs.jctc.9b00591
- 发表时间:2020-01-01
- 期刊:
- 影响因子:5.5
- 作者:Tian, Chuan;Kasavajhala, Koushik;Simmerling, Carlos
- 通讯作者:Simmerling, Carlos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Simmerling其他文献
Prody's latest advancements: Gaining insights into protein-protein and protein-water interactions, and their role in protein dynamics
- DOI:
10.1016/j.bpj.2023.11.2804 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Karolina Mikulska-Ruminska;Frane Doljanin;James M. Krieger;Xin Cao;Gary Wu;Anupam Banerjee;Carlos Simmerling;Evangelos A. Coutsias;Ivet Bahar - 通讯作者:
Ivet Bahar
The Disordered Mobile Loop of GroES Folds into a Defined β-Hairpin upon Binding GroEL*
GroES 的无序移动环在与 GroEL 结合后折叠成定义的 β-发夹*
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:4.8
- 作者:
F. Shewmaker;K. Maskos;Carlos Simmerling;S. Landry - 通讯作者:
S. Landry
Amber 2015, University of California, San Francisco
Amber 2015,加州大学旧金山分校
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
D. Case;J. Berryman;Robin M. Betz;D. Cerutti;T. Cheatham;T. Darden;R. Duke;Timothy J. Giese;H. Gohlke;A. W. Goetz;Nadine Homeyer;S. Izadi;Pawel A. Janowski;Joseph W. Kaus;A. Kovalenko;Tai;S. Legrand;P. Li;T. Luchko;R. Luo;Benjamin D. Madej;K. Merz;G. Monard;P. Needham;Hai Nguyen;H. T. Nguyen;I. Omelyan;A. Onufriev;D. Roe;A. Roitberg;R. S. Ferrer;Carlos Simmerling;W. Smith;J. Swails;R. Walker;Junmei Wang;R. Wolf;Xiongwu Wu;D. York;P. Kollman - 通讯作者:
P. Kollman
Molecular dynamics applied in drug discovery: the case of HIV-1 protease.
分子动力学在药物发现中的应用:以 HIV-1 蛋白酶为例。
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yingzi Shang;Carlos Simmerling - 通讯作者:
Carlos Simmerling
Copper stabilizes antiparallel β-sheet fibrils of the amyloid β40 (Aβ40)-Iowa variant
铜稳定淀粉样蛋白 β40 (Aβ40)-爱荷华变体的反向平行 β-片原纤维
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.8
- 作者:
Elliot J. Crooks;Brandon A. Irizarry;M. Ziliox;T. Kawakami;Tiffany Victor;Feng Xu;H. Hojo;K. Chiu;Carlos Simmerling;W. V. Van Nostrand;Steven O. Smith;L. Miller - 通讯作者:
L. Miller
Carlos Simmerling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
- 批准号:
MR/X030776/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
- 批准号:
MR/Z503873/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
- 批准号:
BB/X018563/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
- 批准号:
BB/X018660/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
- 批准号:
2335170 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
- 批准号:
EP/Y030990/1 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
- 批准号:
10099483 - 财政年份:2024
- 资助金额:
$ 42万 - 项目类别:
Collaborative R&D