New methods for the study of supercritical wave equations
研究超临界波动方程的新方法
基本信息
- 批准号:1700293
- 负责人:
- 金额:$ 10.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project the principal investigator will study dispersive critical and supercritical partial differential equations, further developing several recently introduced methods. Partial differential equations provide a rigorous mathematical description of many important physical, ecological, and economical theories (e.g., Einstein's theory of general relativity, the Black-Scholes model of option pricing in finance). They are studied both analytically and numerically in order to determine the long-term behavior of solutions and their dependence on initial data. In many cases, physically meaningful concepts, such as energy, mass, and momentum, play important roles, since having good control of these quantities may enable one to prove that solutions exist globally in time and to study their behavior. However, it is of great interest to study equations (called energy-supercritical) for which such quantities are insufficient to govern the solution. This class of highly nonlinear equations includes many famous and important ones that arise from modeling physical phenomena (e.g., Einstein's equations, the Navier-Stokes equation, the Yang-Mills equations, and Euler's equations).The goal of the project is to understand, as far as possible, the behavior of "large" solutions to wave equations of supercrticial type, about which little is currently known. The principal investigator's potential contribution to the subject is based on two methods: (1) splitting solutions into incoming and outgoing parts and (2) a comparison principle for the wave equation. His preliminary results apply only to some (canonical) model cases, but seem promising. It will be interesting to generalize them to the nonradial case, to all dimensions, and to other types of nonlinearities and equations. One objective of the project is to take techniques (comparison principles, sub- and supersolutions) specific to the study of elliptic and parabolic equations and apply them in a meaningful way to the supercritical wave equation. The author's approach is different from those of Kenig and Merle and of others (Tao, Krieger and Schlag, Li, Wang and Yu). It leads to unconditional results and to sharp scattering criteria in several cases. Another avenue of investigation is that of linear and nonlinear evolution equations driven by time-dependent potentials. The potential can be deterministic or random (e.g., Brownian motion). This has clear applications to the study of soliton stability and some physical problems. The methods that the principal investigator has introduced, such as a structure formula for wave operators and the use of an abstract Wiener theorem to prove dispersive estimates, provide an improved way of looking at such equations, by allowing a more general time dependence of the potential, and permit stronger conclusions to be reached.
在这个项目中,主要研究人员将研究色散临界偏微分方程和超临界偏微分方程组,进一步发展最近引入的几种方法。偏微分方程提供了许多重要的物理、生态和经济理论的严格的数学描述(例如,爱因斯坦的广义相对论,金融中期权定价的布莱克-斯科尔斯模型)。对它们进行分析和数值研究,以确定解的长期行为及其对初始数据的依赖。在许多情况下,有物理意义的概念,如能量、质量和动量,扮演着重要的角色,因为很好地控制这些量可以使人证明解在时间上是全局存在的,并研究它们的行为。然而,研究这些量不足以支配解的方程(称为能量超临界方程)是非常有意义的。这类高度非线性的方程包括许多著名和重要的物理现象的模拟(例如,爱因斯坦方程、纳维斯托克斯方程、杨-米尔斯方程和欧拉方程)。该项目的目标是尽可能地了解超临界类型波动方程的“大”解的行为,目前对这种解知之甚少。主要研究者对这一课题的潜在贡献基于两种方法:(1)将解分成传入和传出部分;(2)波动方程的比较原理。他的初步结果只适用于一些(典型的)模型案例,但似乎很有希望。将它们推广到非径向情况,所有的维度,以及其他类型的非线性和方程,将是很有趣的。该项目的一个目标是采用专门研究椭圆型和抛物型方程的技术(比较原理、下解和上解),并将它们以有意义的方式应用于超临界波动方程。作者的方法不同于Kenig和Merle以及其他人(陶渊明、Krieger和Schlag、Li、Wang和Yu)的方法。它导致了无条件的结果,并在几种情况下导致了尖锐的分散标准。另一种研究方法是由含时势驱动的线性和非线性发展方程。势可以是确定性的或随机的(例如,布朗运动)。这在孤子稳定性的研究和一些物理问题上都有明显的应用。主要研究人员介绍的方法,如波算符的结构公式和使用抽象的维纳定理来证明色散估计,通过允许势的更一般的时间依赖性,提供了一种看待此类方程的改进方法,并允许得出更强有力的结论。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Beceanu其他文献
Large global solutions for nonlinear Schrodinger equations II, mass-supercritical,energy-subcritical cases
非线性薛定谔方程 II、质量超临界、能量亚临界情况的大全局解
- DOI:
10.1007/s00220-021-03971-w - 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Marius Beceanu;Qingquan Deng;Avy Soffer;Yifei Wu - 通讯作者:
Yifei Wu
Large global solutions for nonlinear Schrodinger equations II, mass-supercritical,energy-subcritical cases
- DOI:
https://doi.org/10.1007/s00220-021-03971-w - 发表时间:
- 期刊:
- 影响因子:
- 作者:
Marius Beceanu;Qingquan Deng;Avy Soffer;Yifei Wu - 通讯作者:
Yifei Wu
Pluriharmonic solutions to Yang-Mills equations: a $C^*$-algebras approach
Yang-Mills 方程的多调和解:$C^*$-代数方法
- DOI:
10.13140/rg.2.2.30051.16163 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Marius Beceanu;Sachin Munshi;Rongwei Yang - 通讯作者:
Rongwei Yang
Marius Beceanu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
New methods in network economics to study environment-friendly behaviours
网络经济学研究环境友好行为的新方法
- 批准号:
DP240100158 - 财政年份:2024
- 资助金额:
$ 10.75万 - 项目类别:
Discovery Projects
EAGER: TRTech-PGR: New methods to study gene-specific translation regulation
EAGER:TRTech-PGR:研究基因特异性翻译调控的新方法
- 批准号:
2327912 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
Standard Grant
A comparative evaluation of overdose prevention programs in New York City and Rhode Island
纽约市和罗德岛州药物过量预防计划的比较评估
- 批准号:
10629749 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
A new method for active tuberculosis case finding
活动性结核病病例发现的新方法
- 批准号:
10665861 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
New approaches for leveraging single-cell data to identify disease-critical genes and gene sets
利用单细胞数据识别疾病关键基因和基因集的新方法
- 批准号:
10768004 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
A new in vivo zebrafish model to study alpha-synuclein aggregation in Lewy Body Disease
研究路易体病中α-突触核蛋白聚集的新体内斑马鱼模型
- 批准号:
10731005 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
Developing and evaluating new measures of family availability to provide care to people with dementia
制定和评估家庭可用性的新衡量标准,为痴呆症患者提供护理
- 批准号:
10728725 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
New Proximity Labeling Tools for Studying 3D Chromatin Structure and Function
用于研究 3D 染色质结构和功能的新型邻近标记工具
- 批准号:
10607285 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
Teratogenicity assessment of new antiviral drugs using 3D morphogenesis models
使用 3D 形态发生模型评估新型抗病毒药物的致畸性
- 批准号:
10741474 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别:
New Methods for the Synthesis of Biologically Active Compounds
合成生物活性化合物的新方法
- 批准号:
10551507 - 财政年份:2023
- 资助金额:
$ 10.75万 - 项目类别: