Problems in Spectral Theory and Analysis
谱理论与分析中的问题
基本信息
- 批准号:1700314
- 负责人:
- 金额:$ 10.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary goal of this project is to develop analytic tools to study Schrodinger operators, the main object of quantum mechanics. The theory describes how a physical system, say a bunch of particles subject to certain forces, will change over time. This is important to predict the behavior of the quantum particles, such as electrons, atoms and molecules. The principal investigator will develop some fundamental methods to understand the spectra and quantum dynamical behavior of Schrodinger operators. In particular, the project focuses on the conductance properties and transport of quasi-periodic media. The results not only provide a good explanation for some phenomena in physics and chemistry, but may also have fruitful applications to modern engineering devices such as semiconductors. Undergraduate and graduate students will have opportunities to participate in some of the research.This project aims at studying several aspects in mathematics by methods of functional, harmonic and geometric analysis. Quasi-periodic Schrodinger operators describe the conductivity of electrons in a two-dimensional crystal layer subject to an external magnetic field of flux acting perpendicular to the lattice plane. The principal investigator will investigate the spectral theory of quasi-periodic operators, including spectral transitions, structure of eigenfunctions in the pure point spectrum regime, and quantum dynamics of spectral measures in the singular continuous spectrum regime. The principal investigator will also study the spectral theory of Laplacians on noncompact complete Riemannian manifolds. The focus is on the existence of eigenvalues or singular continuous spectra embedded into essential spectra of Laplacians on asymptotically flat and on asymptotically hyperbolic manifolds, as characterized by the radial curvature. The goal is to better understand relations between geometric quantities and properties of eigensolutions. Lastly the principal investigator plan to study the independence of the time-frequency translates of various classes of functions, which is stated as HRT conjecture. The priority is to prove the HRT conjecture for special configurations and HRT conjecture for exponentially decaying functions.
该项目的主要目标是开发分析工具来研究薛定谔算子,量子力学的主要对象。该理论描述了物理系统(例如一堆受到某些力的粒子)如何随着时间的推移而变化。这对于预测量子粒子,如电子,原子和分子的行为很重要。主要研究者将发展一些基本的方法来理解薛定谔算子的光谱和量子动力学行为。特别是,该项目侧重于准周期介质的电导特性和传输。这些结果不仅对物理和化学中的一些现象提供了很好的解释,而且可能在半导体等现代工程器件中有富有成效的应用。本科生和研究生将有机会参与部分研究。本项目旨在通过泛函分析、调和分析和几何分析的方法研究数学的几个方面。准周期薛定谔算符描述了二维晶体层中电子的电导率,该二维晶体层受到垂直于晶格平面作用的通量的外部磁场。主要研究者将研究准周期算子的谱理论,包括谱跃迁,纯点谱区本征函数的结构,以及奇异连续谱区谱测度的量子动力学。主要研究者还将研究非紧完备黎曼流形上拉普拉斯算子的谱理论。 重点是存在的特征值或奇异连续谱嵌入到本质谱的拉普拉斯算子的渐近平坦和渐近双曲流形,其特征在于径向曲率。目的是更好地理解几何量和本征解性质之间的关系。最后,主要研究者计划研究各类函数的时频平移的独立性,即HRT猜想。 重点是证明特殊构型的HRT猜想和指数衰减函数的HRT猜想。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The asymptotical behaviour of embedded eigenvalues for perturbed periodic operators
扰动周期算子的嵌入特征值的渐近行为
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Liu, Wencai
- 通讯作者:Liu, Wencai
Inhomogeneous Diophantine approximation in the coprime setting
互质设置中的非齐次丢番图近似
- DOI:10.1016/j.aim.2019.106773
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Jitomirskaya, Svetlana;Liu, Wencai
- 通讯作者:Liu, Wencai
Noncompact complete Riemannian manifolds with dense eigenvalues embedded in the essential spectrum of the Laplacian
具有嵌入拉普拉斯本征谱中的稠密特征值的非紧完备黎曼流形
- DOI:10.1007/s00039-019-00480-w
- 发表时间:2019
- 期刊:
- 影响因子:2.2
- 作者:Jitomirskaya, Svetlana;Liu, Wencai
- 通讯作者:Liu, Wencai
Universal hierarchical structure of quasiperiodic eigenfunctions
- DOI:10.4007/annals.2018.187.3.3
- 发表时间:2016-09
- 期刊:
- 影响因子:0
- 作者:S. Jitomirskaya;Wencai Liu
- 通讯作者:S. Jitomirskaya;Wencai Liu
SOME REFINED RESULTS ON THE MIXED LITTLEWOOD CONJECTURE FOR PSEUDO-ABSOLUTE VALUES
- DOI:10.1017/s1446788718000198
- 发表时间:2017-09
- 期刊:
- 影响因子:0.7
- 作者:Wencai Liu
- 通讯作者:Wencai Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wencai Liu其他文献
Design polar codes with 3×3 kernel matrix based on piecewise Gaussian approximation
基于分段高斯近似的3×3核矩阵设计Polar码
- DOI:
10.1117/12.3017350 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wencai Liu;Zhiliang Huang;Youyan Zhang;Shuihong Zhou - 通讯作者:
Shuihong Zhou
Role of Cu on the mechanical properties and microstructures evolution of Al-xCu-1Li-0.4Mg–1Zn-0.1Zr alloys
Cu对Al-xCu-1Li-0.4Mg-1Zn-0.1Zr合金力学性能和显微组织演变的作用
- DOI:
10.1016/j.msea.2020.139833 - 发表时间:
2020-08 - 期刊:
- 影响因子:0
- 作者:
Jiangwei Sun;Guohua Wu;Liang Zhang;Wencai Liu;Jinshuo Zhang;Chunchang Shi;Weiwei Li - 通讯作者:
Weiwei Li
Evolution of the western North Pacific subtropical high and impact of Asian precipitation from spring to summer
春季到夏季西北太平洋副热带高压的演变以及对亚洲降水的影响
- DOI:
10.1016/j.atmosres.2025.107909 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.400
- 作者:
Wencai Liu;Ning Shi;Huijun Wang - 通讯作者:
Huijun Wang
Dry wear behavior of rheo-casting Al−16Si−4Cu−0.5Mg alloy
流变铸造Al~16Si~4Cu~0.5Mg合金的干磨损行为
- DOI:
10.1016/s1003-6326(16)64410-2 - 发表时间:
2016 - 期刊:
- 影响因子:4.5
- 作者:
Zhaohua Hu;Guohua Wu;Jia Xu;Wenfei Mo;Yanlei Li;Wencai Liu;Liang Zhang;Wenjiang Ding;Jonathan Quan;Yuan-Wei Chang - 通讯作者:
Yuan-Wei Chang
Ultra-light Mg-Li alloy with high modulus prepared by cold metal transfer-based directed energy deposition
通过基于冷金属过渡的定向能量沉积制备的高模量超轻镁锂合金
- DOI:
10.1016/j.addma.2024.104617 - 发表时间:
2025-01-05 - 期刊:
- 影响因子:11.100
- 作者:
Xinmiao Tao;Jiawei Sun;Yuchuan Huang;Jiaxin Yu;Youjie Guo;Yangyang Xu;Lingfan Yi;Guohua Wu;Wencai Liu - 通讯作者:
Wencai Liu
Wencai Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wencai Liu', 18)}}的其他基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052572 - 财政年份:2021
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Hamiltonian Systems and Related Phenomena
哈密顿系统和相关现象
- 批准号:
2000345 - 财政年份:2020
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Problems in Spectral Theory and Analysis
谱理论与分析中的问题
- 批准号:
2015683 - 财政年份:2019
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
相似国自然基金
一种新型的PET/spectral-CT/CT三模态图像引导的小动物放射治疗平台的设计与关键技术研究
- 批准号:LTGY23H220001
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
关于spectral集和spectral拓扑若干问题研究
- 批准号:11661057
- 批准年份:2016
- 资助金额:36.0 万元
- 项目类别:地区科学基金项目
S3AGA样本(Spitzer-SDSS Spectral Atlas of Galaxies and AGNs)及其AGN研究
- 批准号:11473055
- 批准年份:2014
- 资助金额:95.0 万元
- 项目类别:面上项目
相似海外基金
New develpment of spectral and inverse scattering theory-Non linear problems and continuum limit
光谱与逆散射理论的新进展-非线性问题与连续极限
- 批准号:
20K03667 - 财政年份:2020
- 资助金额:
$ 10.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problems in Spectral Theory and Analysis
谱理论与分析中的问题
- 批准号:
2015683 - 财政年份:2019
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Inverse Problems and Spectral Theory for Elliptic Operators
椭圆算子的反问题和谱理论
- 批准号:
1500703 - 财政年份:2015
- 资助金额:
$ 10.16万 - 项目类别:
Continuing Grant
Conference on Inverse Problems and Spectral Theory, October 17-19, 2014
反问题和谱理论会议,2014 年 10 月 17-19 日
- 批准号:
1412493 - 财政年份:2014
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Spectral asymptotics on compact manifolds and related problems in analytical number theory
紧流形上的谱渐进及解析数论中的相关问题
- 批准号:
358779-2008 - 财政年份:2012
- 资助金额:
$ 10.16万 - 项目类别:
Discovery Grants Program - Individual
Completeness Problems in Harmonic Analysis and Spectral Theory
调和分析和谱理论中的完备性问题
- 批准号:
1101278 - 财政年份:2011
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
- 批准号:
1201736 - 财政年份:2011
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Spectral asymptotics on compact manifolds and related problems in analytical number theory
紧流形上的谱渐进及解析数论中的相关问题
- 批准号:
358779-2008 - 财政年份:2011
- 资助金额:
$ 10.16万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Spectral Theory for Singular Integrals, Validated Numerics and Elliptic Problems in Non-Lipschitz Polyhedra: Research and Outreach
职业:非利普希茨多面体中奇异积分、验证数值和椭圆问题的谱理论:研究和推广
- 批准号:
1048467 - 财政年份:2010
- 资助金额:
$ 10.16万 - 项目类别:
Standard Grant
Spectral asymptotics on compact manifolds and related problems in analytical number theory
紧流形上的谱渐进及解析数论中的相关问题
- 批准号:
358779-2008 - 财政年份:2010
- 资助金额:
$ 10.16万 - 项目类别:
Discovery Grants Program - Individual