Hamiltonian Systems and Related Phenomena
哈密顿系统和相关现象
基本信息
- 批准号:2000345
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will study the dynamics of the Schrodinger operator that describes the wave function or state function of a quantum mechanical system. The principal investigator will develop fundamental tools to understand many types of phenomena in physics and chemistry, such as the quantum Hall effect, spin, crystals and quasicrystals. In particular, the project focuses on the conductance, transport, and localization-diffusion in both quasiperiodic and disordered media. The development of the rigorous theory is expected to have many applications, including to quantum information theory and semiconducting materials. The project provides research training opportunities for undergraduate and graduate students, and supports related outreach activities.This project aims at studying several topics in areas spanning mathematical physics, dynamical systems, harmonic analysis, geometric analysis, and algebraic geometry. The Principal Investigator will focus on transitions, hierarchical structures of eigenfunctions, quantum dynamics and spectral gaps for one dimensional quasiperiodic operators and further explore multifrequency and higher dimensional cases. The research will combine methods from algebraic geometry with tools from analysis to study the (ir)reducibility of Bloch, Fermi, and Floquet varieties arising from periodic elliptic operators. In the area of geometric analysis, the project emphasizes using piecewise constructions, gluing techniques, and the compact perturbation theory to investigate the transition of singular spectra and the generic phenomena of Laplacians on noncompact complete manifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究描述量子力学系统的波函数或状态函数的薛定谔算符的动力学。首席研究员将开发基本工具来理解物理和化学中的许多类型的现象,如量子霍尔效应,自旋,晶体和准晶体。该项目特别关注准周期和无序介质中的电导、输运和定位扩散。这一严谨理论的发展有望在量子信息理论和半导体材料等领域得到广泛应用。该项目为本科生和研究生提供研究培训机会,并支持相关的外展活动。该项目旨在研究数学物理、动力系统、谐波分析、几何分析和代数几何等领域的几个主题。首席研究员将重点研究一维准周期算子的跃迁、特征函数的层次结构、量子动力学和谱间隙,并进一步探索多频和高维情况。该研究将结合代数几何的方法和分析的工具来研究由周期椭圆算子引起的Bloch, Fermi和Floquet变体的(ir)可约性。在几何分析方面,本项目强调使用分段构造、胶合技术和紧致摄动理论来研究奇异谱的跃迁和拉普拉斯算子在非紧致完全流形上的一般现象。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Irreducibility of the Bloch variety for finite-range Schrödinger operators
有限范围薛定谔算子的布洛赫簇的不可约性
- DOI:10.1016/j.jfa.2022.109670
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Fillman, Jake;Liu, Wencai;Matos, Rodrigo
- 通讯作者:Matos, Rodrigo
Spacetime quasiperiodic solutions to a nonlinear Schrödinger equation on Z
Z 上非线性薛定谔方程的时空准周期解
- DOI:10.1063/5.0166183
- 发表时间:2024
- 期刊:
- 影响因子:1.3
- 作者:Kachkovskiy, Ilya;Liu, Wencai;Wang, Wei-Min
- 通讯作者:Wang, Wei-Min
Topics on Fermi varieties of discrete periodic Schrödinger operators
关于离散周期薛定谔算子的费米簇的主题
- DOI:10.1063/5.0078287
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Liu, Wencai
- 通讯作者:Liu, Wencai
Power law logarithmic bounds of moments for long range operators in arbitrary dimension
- DOI:10.1063/5.0138325
- 发表时间:2022-12
- 期刊:
- 影响因子:1.3
- 作者:Wencai Liu
- 通讯作者:Wencai Liu
Fermi Isospectrality of Discrete Periodic Schrödinger Operators with Separable Potentials on $$\mathbb {Z}^2$$
$$mathbb {Z}^2$$ 上具有可分离势的离散周期薛定谔算子的费米同谱性
- DOI:10.1007/s00220-022-04575-8
- 发表时间:2023
- 期刊:
- 影响因子:2.4
- 作者:Liu, Wencai
- 通讯作者:Liu, Wencai
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wencai Liu其他文献
Design polar codes with 3×3 kernel matrix based on piecewise Gaussian approximation
基于分段高斯近似的3×3核矩阵设计Polar码
- DOI:
10.1117/12.3017350 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Wencai Liu;Zhiliang Huang;Youyan Zhang;Shuihong Zhou - 通讯作者:
Shuihong Zhou
Role of Cu on the mechanical properties and microstructures evolution of Al-xCu-1Li-0.4Mg–1Zn-0.1Zr alloys
Cu对Al-xCu-1Li-0.4Mg-1Zn-0.1Zr合金力学性能和显微组织演变的作用
- DOI:
10.1016/j.msea.2020.139833 - 发表时间:
2020-08 - 期刊:
- 影响因子:0
- 作者:
Jiangwei Sun;Guohua Wu;Liang Zhang;Wencai Liu;Jinshuo Zhang;Chunchang Shi;Weiwei Li - 通讯作者:
Weiwei Li
Evolution of the western North Pacific subtropical high and impact of Asian precipitation from spring to summer
春季到夏季西北太平洋副热带高压的演变以及对亚洲降水的影响
- DOI:
10.1016/j.atmosres.2025.107909 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.400
- 作者:
Wencai Liu;Ning Shi;Huijun Wang - 通讯作者:
Huijun Wang
Dry wear behavior of rheo-casting Al−16Si−4Cu−0.5Mg alloy
流变铸造Al~16Si~4Cu~0.5Mg合金的干磨损行为
- DOI:
10.1016/s1003-6326(16)64410-2 - 发表时间:
2016 - 期刊:
- 影响因子:4.5
- 作者:
Zhaohua Hu;Guohua Wu;Jia Xu;Wenfei Mo;Yanlei Li;Wencai Liu;Liang Zhang;Wenjiang Ding;Jonathan Quan;Yuan-Wei Chang - 通讯作者:
Yuan-Wei Chang
Ultra-light Mg-Li alloy with high modulus prepared by cold metal transfer-based directed energy deposition
通过基于冷金属过渡的定向能量沉积制备的高模量超轻镁锂合金
- DOI:
10.1016/j.addma.2024.104617 - 发表时间:
2025-01-05 - 期刊:
- 影响因子:11.100
- 作者:
Xinmiao Tao;Jiawei Sun;Yuchuan Huang;Jiaxin Yu;Youjie Guo;Yangyang Xu;Lingfan Yi;Guohua Wu;Wencai Liu - 通讯作者:
Wencai Liu
Wencai Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wencai Liu', 18)}}的其他基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Non-Perturbative Analysis for Multi-Dimensional Quasiperiodic Systems
FRG:协作研究:多维准周期系统的非微扰分析
- 批准号:
2052572 - 财政年份:2021
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Problems in Spectral Theory and Analysis
谱理论与分析中的问题
- 批准号:
2015683 - 财政年份:2019
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Problems in Spectral Theory and Analysis
谱理论与分析中的问题
- 批准号:
1700314 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Age-related differences in neurobiological systems supporting emotion
支持情绪的神经生物系统与年龄相关的差异
- 批准号:
10606216 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
The proposed PhD topic is related to digital antenna and system architecture design required for modern radar systems.
拟议的博士课题与现代雷达系统所需的数字天线和系统架构设计有关。
- 批准号:
2881147 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Studentship
Killing healthcare: How attacks against health systems in conflict zones affect patient related outcome measures and healthcare workers
扼杀医疗保健:冲突地区对卫生系统的攻击如何影响患者相关的结果措施和医护人员
- 批准号:
2788448 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Studentship
Conference: Semi-annual Workshop in Dynamical Systems and Related Topics at Penn State
会议:宾夕法尼亚州立大学动态系统及相关主题半年度研讨会
- 批准号:
2230142 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Unraveling the neural basis of female aggression and dementia-related aggression: a systems biology approach.
揭示女性攻击性和痴呆相关攻击性的神经基础:系统生物学方法。
- 批准号:
10767601 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
- 批准号:
2153654 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Multi omics systems biology modelling of patient networks in age related diseases
年龄相关疾病患者网络的多组学系统生物学建模
- 批准号:
BB/X511821/1 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Training Grant
Unraveling the neural basis of female aggression and dementia-related aggression: a systems biology approach.
揭示女性攻击性和痴呆相关攻击性的神经基础:系统生物学方法。
- 批准号:
10633263 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Advanced Research Training in the Biology of the Inner Ear and Related Systems
内耳及相关系统生物学高级研究培训
- 批准号:
10617170 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:
Threat-Related Negative Valence Systems, Child Victimization, and Anxiety_Supplement
与威胁相关的负价系统、儿童受害和焦虑_补充
- 批准号:
10597417 - 财政年份:2022
- 资助金额:
$ 18万 - 项目类别:














{{item.name}}会员




