Research Initiation Award: Fast Solvers for Variable-Coefficient Poroelastic Models
研究启动奖:变系数多孔弹性模型的快速求解器
基本信息
- 批准号:1700328
- 负责人:
- 金额:$ 29.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research Initiation Awards provide support for faculty at Historically Black Colleges and Universities who are building a research program. It is expected that the award helps to further the faculty member's research capability and effectiveness, improves research and teaching at his home institution, and involves undergraduate students in research experiences. The award to Morgan State University has potential broader and societal impact in a number of areas. The project focuses on the development of numerical methods arising from many important applications. The research crosses the fields of mathematics, computational physics and material sciences. Undergraduate and graduate students will gain research experiences.This project focuses on the development of numerical methods for variable-coefficient poroelastic models. The research will propose, analyze and implement several fast, optimal and scalable numerical algorithms for poroelastic models under the spatial discretizations including the finite element method, finite volume method and immersed interface method. Specifically, novel numerical approaches, such as preconditioning methods, Multigrid methods, domain decomposition methods, and the acceleration techniques for the conventional iterative methods, will be developed and investigated. The numerical algorithms will greatly improve the efficiency of poroelastic solvers. The research has the potential of improving the linear and nonlinear solvers for the conventional Finite Difference and Finite Element methods for poroelastic models in various applications. As an example, the developed numerical algorithms can be used in simulating energy storage in subsurface, which requires large-scale numerical computations; furthermore, the developed numerical methods can be applied to simulate a brain swelling model and therefore quantify brain edema assessment. Combined with image data and patient-specific data such as cerebral blood flow conditions, the numerical methods can be used for simulating brain swelling under ischemic conditions or after traumatic brain injury. The algorithms will be implemented as open source software packages.
研究启动奖为历史上黑人学院和大学的教师提供支持,他们正在建立一个研究项目。预计该奖项将有助于进一步提高教师的研究能力和效率,改善其所在机构的研究和教学,并使本科生参与研究经验。授予摩根州立大学的奖项在许多领域具有潜在的更广泛的社会影响。该项目的重点是从许多重要的应用所产生的数值方法的发展。该研究跨越了数学、计算物理和材料科学领域。本科生和研究生将获得研究经验。本项目侧重于发展变系数多孔弹性模型的数值方法。本研究将提出、分析并实现几种快速、优化和可扩展的空间离散下的多孔弹性模型数值算法,包括有限元法、有限体积法和浸入界面法。具体而言,新的数值方法,如预处理方法,多重网格方法,区域分解方法,和加速技术的传统迭代方法,将开发和研究。该数值算法将大大提高求解效率。该研究具有改进传统的有限差分和有限元方法的线性和非线性求解器的多孔弹性模型在各种应用的潜力。作为一个例子,所开发的数值算法可以用于模拟能量存储在地下,这需要大规模的数值计算;此外,所开发的数值方法可以应用于模拟脑肿胀模型,从而量化脑水肿评估。结合图像数据和患者特定的数据,如脑血流状况,数值方法可用于模拟缺血条件下或创伤性脑损伤后的脑肿胀。这些算法将作为开放源码软件包实施。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An H(div)-conforming finite element Method for the Biot consolidation model
Biot固结模型的符合H(div)的有限元方法
- DOI:10.4208/eajam.170918.261218
- 发表时间:2019
- 期刊:
- 影响因子:1.2
- 作者:Zeng Yuping;Cai Mingchao;Wang Feng
- 通讯作者:Wang Feng
Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation
Biot模型参数鲁棒多物理场算法在脑水肿模拟中的应用
- DOI:10.1016/j.matcom.2020.04.027
- 发表时间:2020
- 期刊:
- 影响因子:4.6
- 作者:Ju, Guoliang;Cai, Mingchao;Li, Jingzhi;Tian, Jing
- 通讯作者:Tian, Jing
An H(div)-conforming Finite Element Method for Biot’s Consolidation Model
Biot’s 固结模型的符合 H(div) 的有限元方法
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:1.2
- 作者:Zeng, Yuping;Cai, Mingchao;Wang, Feng.
- 通讯作者:Wang, Feng.
Comparisons of Some Iterative Algorithms for Biot Equations.
Biot 方程一些迭代算法的比较。
- DOI:
- 发表时间:2015
- 期刊:
- 影响因子:0
- 作者:Cai,Mingchao;Zhang,Guoping
- 通讯作者:Zhang,Guoping
Decoupling PDE Computation with Intrinsic or Inertial Robin Interface Condition
- DOI:10.3934/era.2020102
- 发表时间:2019-06
- 期刊:
- 影响因子:0.8
- 作者:Mo Mu;Lian Zhang
- 通讯作者:Mo Mu;Lian Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingchao Cai其他文献
Low regularity error analysis for an H(div)-conforming discontinuous Galerkin approximation of Stokes problem
- DOI:
10.1016/j.cam.2024.116118 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Yuping Zeng;Liuqiang Zhong;Feng Wang;Mingchao Cai;Shangyou Zhang - 通讯作者:
Shangyou Zhang
A mortar method using nonconforming and mixed finite elements for the coupled Stokes-Darcy model
耦合Stokes-Darcy模型中非相容混合有限元的砂浆法
- DOI:
10.4208/aamm.2016.m1397 - 发表时间:
2017 - 期刊:
- 影响因子:1.4
- 作者:
Peiqi Huang;Jinru Chen;Mingchao Cai - 通讯作者:
Mingchao Cai
Is the more able manager always safer from takeover
越有能力的经理是否总是更容易被接管
- DOI:
10.1016/j.econmod.2009.07.008 - 发表时间:
2010 - 期刊:
- 影响因子:4.7
- 作者:
Mingchao Cai;Yue Li;Yongxiang Wang;Rong Xu - 通讯作者:
Rong Xu
An iterative decoupled algorithm with unconditional stability for Biot model
- DOI:
10.1090/mcom/3809 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Huipeng Gu;Mingchao Cai;Jingzhi Li - 通讯作者:
Jingzhi Li
Household Life-cycle Asset Allocation and Background Risk of Labor Income
家庭生命周期资产配置与劳动收入背景风险
- DOI:
- 发表时间:
- 期刊:
- 影响因子:8.2
- 作者:
Mingchao Cai;Jun Zhao;Rulu Pan;Haozhi Huang - 通讯作者:
Haozhi Huang
Mingchao Cai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingchao Cai', 18)}}的其他基金
CBMS Conference: Deep Learning and Numerical Partial Differential Equations
CBMS 会议:深度学习和数值偏微分方程
- 批准号:
2228010 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Excellence in Research: Numerical Algorithms for Fluid Poroelastic Structure Interaction Models
卓越研究:流体多孔弹性结构相互作用模型的数值算法
- 批准号:
1831950 - 财政年份:2018
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
相似海外基金
Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
- 批准号:
2300319 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
- 批准号:
2300405 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
- 批准号:
2344742 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
- 批准号:
2200377 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
- 批准号:
2300321 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
- 批准号:
2300448 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
- 批准号:
2300454 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
- 批准号:
2300475 - 财政年份:2023
- 资助金额:
$ 29.93万 - 项目类别:
Standard Grant