Excellence in Research: Numerical Algorithms for Fluid Poroelastic Structure Interaction Models

卓越研究:流体多孔弹性结构相互作用模型的数值算法

基本信息

  • 批准号:
    1831950
  • 负责人:
  • 金额:
    $ 24.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The research project aims at developing advanced numerical methods for the complex fluid poroelastic structure interaction (FPSI) models, which play a critical role in various applications. For example, they are widely used in biomechanic modeling of tissues, teeth, and bones. Other application areas include environmental sciences and reservoir engineering. The research team will propose, analyze, and implement effective and efficient numerical algorithms for some FPSI models. The project will involve postdoc researchers and some undergraduate students at a HBCU and therefore broaden the participation of underrepresented groups in research. The research and educational efforts are expected to help the participants to gain experience from such a challenging computational science topic.Numerical simulations of fluid poroelastic structure interaction problems are challenging because they are multi-domain, multi-scale, and multi-physics models, the subdomain models are of different types, discretization schemes that mimic physical laws are difficult to design, and the stability and accuracy are hard to preserve in partitioned numerical algorithms which decouple the computations of the coupled models. The objective of this project aims at developing efficient and effective numerical algorithms that can address the these difficulties. In particular, the investigator and the team members will consider decoupled preconditioning techniques based on a monolithic formulation, two-grid methods combined with the Robin-Neumann iteration, multi-rate time-stepping schemes which use different time step sizes in different subdomain models, domain decomposition methods, and multigrid methods that can accelerate the convergence of the numerical algorithms. The project has the potential of stimulating more novel decoupled algorithms for various coupled multi-domain and multi-physics models in different applications. It is expected that the algorithms and the corresponding analysis in this project will have a broad impact on several branches of applied mathematics such as numerical analysis and computational physics. The developed numerical algorithms will also provide powerful tools in biomechanic computation and reservoir engineering simulation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目旨在开发复杂流体孔弹性结构相互作用(FPSI)模型的先进数值方法,这些模型在各种应用中起着至关重要的作用。例如,它们被广泛用于组织、牙齿和骨骼的生物力学建模。其他应用领域包括环境科学和油藏工程。研究小组将为一些FPSI模型提出、分析和实施有效和高效的数值算法。该项目将涉及博士后研究人员和HBCU的一些本科生,从而扩大代表不足的群体参与研究的范围。流体-孔弹性结构相互作用问题的数值模拟是具有挑战性的,因为它们是多区域、多尺度、多物理模型,子域模型类型不同,模拟物理规律的离散化格式很难设计,在将耦合模型的计算解耦的分区数值算法中很难保持稳定性和准确性。该项目的目标是开发能够解决这些困难的高效和有效的数值算法。特别是,研究人员和团队成员将考虑基于整体公式的解耦预条件技术、结合Robin-Neumann迭代的双网格方法、在不同子域模型中使用不同时间步长的多速率时间步长格式、区域分解方法和可以加速数值算法收敛的多重网格方法。该项目有可能激发更多新的解耦算法,用于不同应用中的各种耦合的多域和多物理模型。预计该项目中的算法和相应的分析将对应用数学的几个分支,如数值分析和计算物理产生广泛的影响。开发的数值算法还将在生物力学计算和油藏工程模拟方面提供强大的工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An H(div)-conforming finite element Method for the Biot consolidation model
Biot固结模型的符合H(div)的有限元方法
A mixed virtual element method for Biot's consolidation model
Biot固结模型的混合虚拟单元法
Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation
Biot模型参数鲁棒多物理场算法在脑水肿模拟中的应用
  • DOI:
    10.1016/j.matcom.2020.04.027
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ju, Guoliang;Cai, Mingchao;Li, Jingzhi;Tian, Jing
  • 通讯作者:
    Tian, Jing
An H(div)-conforming Finite Element Method for Biot’s Consolidation Model
Biot’s 固结模型的符合 H(div) 的有限元方法
A 3D OpenFOAM based finite volume solver for incompressible Oldroyd-B model with infinity relaxation time
基于 3D OpenFOAM 的有限体积求解器,适用于具有无限弛豫时间的不可压缩 Oldroyd-B 模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingchao Cai其他文献

Low regularity error analysis for an H(div)-conforming discontinuous Galerkin approximation of Stokes problem
  • DOI:
    10.1016/j.cam.2024.116118
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuping Zeng;Liuqiang Zhong;Feng Wang;Mingchao Cai;Shangyou Zhang
  • 通讯作者:
    Shangyou Zhang
A mortar method using nonconforming and mixed finite elements for the coupled Stokes-Darcy model
耦合Stokes-Darcy模型中非相容混合有限元的砂浆法
Is the more able manager always safer from takeover
越有能力的经理是否总是更容易被接管
  • DOI:
    10.1016/j.econmod.2009.07.008
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Mingchao Cai;Yue Li;Yongxiang Wang;Rong Xu
  • 通讯作者:
    Rong Xu
An iterative decoupled algorithm with unconditional stability for Biot model
  • DOI:
    10.1090/mcom/3809
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Huipeng Gu;Mingchao Cai;Jingzhi Li
  • 通讯作者:
    Jingzhi Li
Household Life-cycle Asset Allocation and Background Risk of Labor Income
家庭生命周期资产配置与劳动收入背景风险

Mingchao Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mingchao Cai', 18)}}的其他基金

CBMS Conference: Deep Learning and Numerical Partial Differential Equations
CBMS 会议:深度学习和数值偏微分方程
  • 批准号:
    2228010
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Research Initiation Award: Fast Solvers for Variable-Coefficient Poroelastic Models
研究启动奖:变系数多孔弹性模型的快速求解器
  • 批准号:
    1700328
  • 财政年份:
    2017
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
  • 批准号:
    2308090
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319536
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Research on the effects of the atmosphere and ocean coupling processes on the MJO using shipboard observations and numerical modeling
利用舰载观测和数值模拟研究大气和海洋耦合过程对MJO的影响
  • 批准号:
    23H01243
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319142
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 24.99万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了