CBMS Conference: Deep Learning and Numerical Partial Differential Equations

CBMS 会议:深度学习和数值偏微分方程

基本信息

  • 批准号:
    2228010
  • 负责人:
  • 金额:
    $ 3.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-03-01 至 2024-02-29
  • 项目状态:
    已结题

项目摘要

This award provides support for the Conference Board of the Mathematical Sciences conference "Deep Learning and Numerical PDEs," to be held at Morgan State University in Baltimore, June 19-24, 2023. This conference will bring together experts from mathematics, computer science, and engineering on topics involving deep learning and numerical partial differential equations (PDEs). As such, it will provide an education platform and forum for experts and young researchers to communicate new advancements in theoretical and application developments. The interaction between theory and application experts is intended to spark new ideas and collaborative projects. The conference will fund approximately 30 participants, especially graduate students, postdoctoral associates, early-career researchers, and individuals from underrepresented groups. The meeting aims to provide extraordinary opportunities to the participants to study the fundamental mathematical theory of deep learning, communicate potential important research directions, discuss possible practical applications, and interact with leading researchers. The distinguished principal lecturer will be Verne M. Willaman Professor Jinchao Xu of Pennsylvania State University. The lectures will present the latest developments on the theory and applications of deep learning, bridging models and algorithms from two different fields: (1) machine learning, including logistic regression and deep neural networks, and (2) numerical PDEs, including finite element and multigrid methods. The lecture series builds upon a discussion on the latest developments in machine learning models and algorithms and presents cutting-edge research on intrinsically connected topics to the participants of the conference. As a result, this conference is expected to bring novel insights into the understanding of deep learning, and to further promote their analysis and applications in different scientific and engineering fields. For more information, please refer to the conference webpage: https://sites.google.com/view/nsf-cbms-dl-nmpde/homeThis award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项为将于2023年6月19日至24日在巴尔的摩的摩根州立大学举行的数学科学会议“深度学习和数值偏微分方程”会议委员会提供支持。本次会议将汇集来自数学、计算机科学和工程领域的专家,主题涉及深度学习和数值偏微分方程(PDE)。因此,它将为专家和年轻研究人员提供一个教育平台和论坛,以交流理论和应用发展的新进展。理论和应用专家之间的互动旨在激发新的想法和合作项目。会议将资助大约30名参与者,特别是研究生,博士后,早期职业研究人员和来自代表性不足群体的个人。会议旨在为与会者提供非凡的机会,学习深度学习的基础数学理论,交流潜在的重要研究方向,讨论可能的实际应用,并与领先的研究人员进行互动。杰出的首席讲师将是凡尔纳M。宾夕法尼亚州立大学教授徐金超。讲座将介绍深度学习理论和应用的最新发展,桥接两个不同领域的模型和算法:(1)机器学习,包括逻辑回归和深度神经网络,以及(2)数值偏微分方程,包括有限元和多重网格方法。该系列讲座建立在对机器学习模型和算法最新发展的讨论基础上,并向会议参与者展示了关于内在联系主题的前沿研究。因此,本次会议有望为深度学习的理解带来新的见解,并进一步促进其在不同科学和工程领域的分析和应用。欲了解更多信息,请参阅会议网页:https://sites.google.com/view/nsf-cbms-dl-nmpde/homeThis奖反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A combination of physics-informed neural networks with the fixed-stress splitting iteration for solving Biot's model
结合物理信息神经网络与固定应力分裂迭代来求解 Biot 模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mingchao Cai其他文献

Low regularity error analysis for an H(div)-conforming discontinuous Galerkin approximation of Stokes problem
  • DOI:
    10.1016/j.cam.2024.116118
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Yuping Zeng;Liuqiang Zhong;Feng Wang;Mingchao Cai;Shangyou Zhang
  • 通讯作者:
    Shangyou Zhang
A mortar method using nonconforming and mixed finite elements for the coupled Stokes-Darcy model
耦合Stokes-Darcy模型中非相容混合有限元的砂浆法
Is the more able manager always safer from takeover
越有能力的经理是否总是更容易被接管
  • DOI:
    10.1016/j.econmod.2009.07.008
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Mingchao Cai;Yue Li;Yongxiang Wang;Rong Xu
  • 通讯作者:
    Rong Xu
An iterative decoupled algorithm with unconditional stability for Biot model
  • DOI:
    10.1090/mcom/3809
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
  • 作者:
    Huipeng Gu;Mingchao Cai;Jingzhi Li
  • 通讯作者:
    Jingzhi Li
A 3D OpenFOAM based finite volume solver for incompressible Oldroyd-B model with infinity relaxation time
基于 3D OpenFOAM 的有限体积求解器,适用于具有无限弛豫时间的不可压缩 Oldroyd-B 模型

Mingchao Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mingchao Cai', 18)}}的其他基金

Excellence in Research: Numerical Algorithms for Fluid Poroelastic Structure Interaction Models
卓越研究:流体多孔弹性结构相互作用模型的数值算法
  • 批准号:
    1831950
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Research Initiation Award: Fast Solvers for Variable-Coefficient Poroelastic Models
研究启动奖:变系数多孔弹性模型的快速求解器
  • 批准号:
    1700328
  • 财政年份:
    2017
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant

相似海外基金

Conference: US-Taiwan Workshop on Deep Tech Innovation and Partnerships
会议:美台深度技术创新与合作研讨会
  • 批准号:
    2414276
  • 财政年份:
    2024
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Conference: Quality and Productivity Research Conference - Statistics, Deep Learning, and the People Side of Process
会议:质量和生产力研究会议 - 统计、深度学习和流程的人员方面
  • 批准号:
    2312733
  • 财政年份:
    2023
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference & Deep-Field Planning Workshop
合作研究:会议:跨学科南极地球科学会议
  • 批准号:
    2231559
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Interdisciplinary Antarctic Earth Science Conference & Deep-Field Planning Workshop
合作研究:会议:跨学科南极地球科学会议
  • 批准号:
    2231558
  • 财政年份:
    2022
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Broadening Participation at The Conference on the Mathematical Theory of Deep Learning
扩大深度学习数学理论会议的参与范围
  • 批准号:
    2041303
  • 财政年份:
    2021
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
2018 Geobiology Gordon Research Conference: The microbial planet from deep time to today
2018地球生物学戈登研究会议:从深时至今日的微生物星球
  • 批准号:
    1817276
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Gordon Research Conference: Deep Carbon Science in the Context of Geologic Time, Rhode Island, June 17-21, 2018
戈登研究会议:地质时代背景下的深层碳科学,罗德岛,2018 年 6 月 17-21 日
  • 批准号:
    1830831
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
The Deep Learning for Multi-phase Organic Chemistry Conference; Irvine, California; September 27-28, 2018
多相有机化学深度学习会议;
  • 批准号:
    1844584
  • 财政年份:
    2018
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
Earth's Deep Interior - The Fourth Biennial SEDI Symposium, Whistler Conference Centre, Whistler, B.C., August 8-12, 1994
地球深处 - 第四届双年度 SEDI 研讨会,惠斯勒会议中心,不列颠哥伦比亚省惠斯勒,1994 年 8 月 8 日至 12 日
  • 批准号:
    157125-1994
  • 财政年份:
    1994
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Conference Grants (H)
"Deep Earth and Planetary Volatiles Conference, September 21-24, 1994, California Institute of Technology
“地球深处和行星挥发物会议,1994 年 9 月 21-24 日,加州理工学院
  • 批准号:
    9402914
  • 财政年份:
    1994
  • 资助金额:
    $ 3.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了