Computability on Cones
锥体上的可计算性
基本信息
- 批准号:1700361
- 负责人:
- 金额:$ 20.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2020-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Computability theory is an area within mathematical logic that studies the complexity of countable mathematical objects. Some mathematical objects, constructions, and proofs are more complicated than others. Logicians have developed various ways of measuring this complexity. When one is in interested in countable objects -- with which a large portion of mathematics is concerned -- the tools to measure these complexities come from computability theory. The objective of this project is to draw connections between complexity issues and structural issues to improve understanding of what shapes and forms complexity can take. This project is part of an ongoing study of the structure that emerges when considering computability theoretic properties on a cone, that is, properties that hold relative to almost every oracle with respect to Martin's measure. In particular, the project will explore the connections between Vaught's conjecture and computability theory, and the generalizations of the uniform Martin's conjecture. A few years ago, connections between computable structure theory and Vaught's conjecture emerged unexpectedly. While it may take many years to see Vaught's conjecture settled, this project pursues a particular aspect: its connections to computability theory.
可计算性理论(Computability Theory)是数学逻辑中的一个领域,研究可数数学对象的复杂性。一些数学对象、构造和证明比其他的更复杂。逻辑学家已经开发了各种方法来衡量这种复杂性。当一个人对可数对象感兴趣时--数学的很大一部分都与之有关--测量这些复杂性的工具来自可计算性理论。这个项目的目的是绘制复杂性问题和结构性问题之间的联系,以提高对复杂性的形状和形式的理解。这个项目是一个正在进行的研究的结构时出现的考虑可计算性理论属性的一个锥,也就是说,相对于马丁的措施,几乎每一个甲骨文持有的属性。特别是,该项目将探索Vaught猜想和可计算性理论之间的联系,以及均匀马丁猜想的推广。几年前,可计算结构理论和沃特猜想之间的联系出人意料地出现了。虽然可能需要很多年才能看到Vaught的猜想得到解决,但这个项目追求一个特定的方面:它与可计算性理论的联系。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Martin's Conjecture: A Classification of the Naturally Occurring Turing Degrees
马丁猜想:自然发生的图灵度的分类
- DOI:10.1090/noti1940
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Montalbán, Antonio
- 通讯作者:Montalbán, Antonio
A note on the consistency operator
关于一致性运算符的注释
- DOI:10.1090/proc/14948
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Walsh, James
- 通讯作者:Walsh, James
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonio Montalban其他文献
BH-30236, a Novel Macrocyclic Clk Inhibitor Modulating Aberrant RNA Splicing, Demonstrates Potent Anti-Cancer Activity Against Myeloid Malignancies
- DOI:
10.1182/blood-2024-208789 - 发表时间:
2024-11-05 - 期刊:
- 影响因子:
- 作者:
Wei Deng;Ping Jiang;Danan Li;Dayong Zhai;Nancy Ling;Zhenping Wang;Yue Hu;Evan Rogers;Levan Darjania;Jeff Whitten;Jesse Shao;Antonio Montalban;Eugene Rui;J. Jean Cui - 通讯作者:
J. Jean Cui
Antonio Montalban的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonio Montalban', 18)}}的其他基金
FRG: Collaborative Research: Computability-Theoretic Aspects of Combinatorics
FRG:协作研究:组合学的可计算性理论方面
- 批准号:
1854360 - 财政年份:2019
- 资助金额:
$ 20.86万 - 项目类别:
Standard Grant
International Conference on Computability, Complexity, and Randomness
可计算性、复杂性和随机性国际会议
- 批准号:
1837069 - 财政年份:2018
- 资助金额:
$ 20.86万 - 项目类别:
Standard Grant
Computability and Complexity in Mathematics
数学中的可计算性和复杂性
- 批准号:
1363310 - 财政年份:2014
- 资助金额:
$ 20.86万 - 项目类别:
Standard Grant
Computability Theory and its Applications
可计算性理论及其应用
- 批准号:
0600824 - 财政年份:2006
- 资助金额:
$ 20.86万 - 项目类别:
Standard Grant
相似海外基金
Elucidating and bypassing molecular mechanisms that suppress Muller glia-dependent regeneration of cones in two zebrafish models of chronic retinal damage
阐明和绕过抑制两种慢性视网膜损伤斑马鱼模型中穆勒胶质细胞依赖性视锥细胞再生的分子机制
- 批准号:
10567836 - 财政年份:2023
- 资助金额:
$ 20.86万 - 项目类别:
Subcellular Proteomic Investigation of Projection Neuron Growth Cones in Developing Mouse Cortex
发育中的小鼠皮层投射神经元生长锥的亚细胞蛋白质组学研究
- 批准号:
10750664 - 财政年份:2023
- 资助金额:
$ 20.86万 - 项目类别:
Knee evaluation under mechanical loading by cones ultrashort echo time MR imaging
通过锥体超短回波时间 MR 成像对机械负荷下的膝关节进行评估
- 批准号:
10352055 - 财政年份:2022
- 资助金额:
$ 20.86万 - 项目类别:
Knee evaluation under mechanical loading by cones ultrashort echo time MR imaging
通过锥体超短回波时间 MR 成像对机械负荷下的膝关节进行评估
- 批准号:
10602431 - 财政年份:2022
- 资助金额:
$ 20.86万 - 项目类别:
Mori cones of the blow-ups of weighted projective surfaces
加权投影面放大的森锥体
- 批准号:
562644-2021 - 财政年份:2021
- 资助金额:
$ 20.86万 - 项目类别:
University Undergraduate Student Research Awards
Caustics in Many-Particle Quantum Dynamics: Light-cones and Catastrophes
多粒子量子动力学中的焦散:光锥和灾难
- 批准号:
518747-2018 - 财政年份:2020
- 资助金额:
$ 20.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
New development of analysis and geometry on convex cones
凸锥分析与几何新进展
- 批准号:
20K03657 - 财政年份:2020
- 资助金额:
$ 20.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the theory of two-dimensional materials with tilted Dirac cones
倾斜狄拉克锥二维材料理论
- 批准号:
2239575 - 财政年份:2019
- 资助金额:
$ 20.86万 - 项目类别:
Studentship
Caustics in Many-Particle Quantum Dynamics: Light-cones and Catastrophes
多粒子量子动力学中的焦散:光锥和灾难
- 批准号:
518747-2018 - 财政年份:2019
- 资助金额:
$ 20.86万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




