On Numbers, Germs, and Series

论数字、细菌和级数

基本信息

项目摘要

This project applies algebraic and model-theoretic tools to study the growth rates of functions. Algebra is one of the oldest branches of mathematics, whereas model theory is a branch of mathematical logic, a fairly new subject that originated in the late 19th century with philosophical investigations into the foundations of mathematics. However, in recent decades logic has found many applications in other parts of mathematics, in computer science, and even in engineering. For about fifteen years, the PI has been involved in a collaborative effort to develop a model-theoretic treatment of asymptotic analysis. These investigations are naturally related to other fields within mathematics (mainly logic and analysis) but may also lead to novel applications of differential equations in science and engineering. They recently led to some decisive positive results, and many questions which seemed out of reach previously may now be answerable.More concretely, the goal of this project is to unify three seemingly very different approaches to enrich the real continuum by infinitesimal and infinite quantities: surreal numbers, germs of real-valued functions, and transseries. Surreal numbers have a combinatorial flavor and encompass Cantor's ordinal numbers; they were introduced by J. H. Conway in the 1970s in connection with game theory. Germs of real-valued functions are central objects in analysis; they were first systematically studied by P. du Bois-Reymond in the 1870s. Transseries are formal objects that model the growth rates of such germs at infinity; they arose in both analysis and logic during the 1980s. Their formal nature also makes transseries suitable for machine computations in computer algebra systems. The goal of this proposal is to deepen our understanding of these structures, and to establish links between them. For example, we would like to know: Are there analytic structures (Hardy fields) with the same logical features as transseries? Is there a natural isomorphism between surreals and transseries? Answers to questions such as these may now be within grasp due to fundamental advances in our understanding of the ideas of number, series, and function within the last decade, and would exhibit heretofore unknown relationships between them.
这个项目应用代数和模型理论工具来研究函数的增长率。代数是数学最古老的分支之一,而模型论是数理逻辑的一个分支,一个相当新的学科,起源于世纪后期对数学基础的哲学研究。然而,近几十年来,逻辑在数学的其他部分,计算机科学,甚至工程学中也有许多应用。大约15年来,PI一直致力于开发渐近分析的模型理论处理方法。这些研究自然与数学中的其他领域(主要是逻辑和分析)有关,但也可能导致微分方程在科学和工程中的新应用。他们最近导致了一些决定性的积极成果,许多问题,似乎遥不可及以前现在可能是answered.More具体地说,这个项目的目标是统一三个看似非常不同的方法来丰富的真实的连续无穷小和无限数量:超真实的数,芽实值函数,和transseries。超实数有一种组合的味道,包括康托的序数,它们是由J。康威在1970年代与博弈论有关。实值函数的芽是分析中的中心对象;它们首先由P. du Bois-Reymond在19世纪70年代系统地研究。Transseries是一种形式化的对象,它模拟了这种细菌在无穷远处的增长率;它们在20世纪80年代出现在分析和逻辑中。它们的形式性质也使得transseries适合于计算机代数系统中的机器计算。本建议的目的是加深我们对这些结构的了解,并在它们之间建立联系。例如,我们想知道:是否存在与transseries具有相同逻辑特征的解析结构(哈代域)?超实数和跨级数之间是否存在自然同构?由于在过去十年中,我们对数、级数和函数的概念的理解取得了根本性的进展,这些问题的答案现在可能已经触手可及,并且将展示出它们之间迄今为止未知的关系。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The surreal numbers as a universal $H$-field
作为通用 $H$ 字段的超现实数字
  • DOI:
    10.4171/jems/858
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Aschenbrenner, Matthias;van den Dries, Lou;van der Hoeven, Joris
  • 通讯作者:
    van der Hoeven, Joris
Whitney’s extension problem in o-minimal structures
o-最小结构中的惠特尼可拓问题
  • DOI:
    10.4171/rmi/1077
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aschenbrenner, Matthias;Thamrongthanyalak, Athipat
  • 通讯作者:
    Thamrongthanyalak, Athipat
On numbers, germs, and transseries
关于数量、细菌和跨系列
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aschenbrenner, M.;van den Dries, L.;van der Hoeven, J.
  • 通讯作者:
    van der Hoeven, J.
Maximal immediate extensions of valued differential fields: MAXIMAL IMMEDIATE EXTENSIONS OF VALUED DIFFERENTIAL FIELDS
值微分域的最大立即扩展:MAXIMAL IMMEDIATE EXTENSIONS OF VALUED DIFFERENTIAL FIELDS
The Logical Complexity of Finitely Generated Commutative Rings
有限生成交换环的逻辑复杂性
  • DOI:
    10.1093/imrn/rny023
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Aschenbrenner, Matthias;Khélif, Anatole;Naziazeno, Eudes;Scanlon, Thomas
  • 通讯作者:
    Scanlon, Thomas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Aschenbrenner其他文献

THE NUMBER OF (cid:70) q -POINTS ON DIAGONAL HYPERSURFACES WITH MONOMIAL DEFORMATION
单项变形对角超曲面上 (cid:70) q 点的数量
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. E. M. C. C. Arthy;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang
  • 通讯作者:
    Ruixiang Zhang
AN ELIMINATION THEOREM FOR MIXED REAL-INTEGER SYSTEMS
混合实整数系统的消除定理
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthias Aschenbrenner
  • 通讯作者:
    Matthias Aschenbrenner
Asymptotic Differential Algebra and Model Theory of Transseries
渐近微分代数与跨系列模型论
  • DOI:
    10.23943/princeton/9780691175423.001.0001
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Matthias Aschenbrenner;L. Dries;J. Hoeven
  • 通讯作者:
    J. Hoeven
Michael’s Selection Theorem in a semilinear context
半线性背景下的迈克尔选择定理
  • DOI:
    10.1515/advgeom-2015-0018
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Matthias Aschenbrenner;Athipat Thamrongthanyalak
  • 通讯作者:
    Athipat Thamrongthanyalak
Lefschetz extensions, tight closure and big Cohen-Macaulay algebras
Lefschetz 扩展、紧闭合和大 Cohen-Macaulay 代数
  • DOI:
    10.1007/s11856-007-0080-0
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Matthias Aschenbrenner;H. Schoutens
  • 通讯作者:
    H. Schoutens

Matthias Aschenbrenner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Aschenbrenner', 18)}}的其他基金

MODEL THEORY AND ALGEBRA
模型理论和代数
  • 批准号:
    0969642
  • 财政年份:
    2010
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Continuing Grant
Foundations of Asymptotic Differential Algebra
渐近微分代数基础
  • 批准号:
    0556197
  • 财政年份:
    2006
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Model Theory, Algebra and Geometry
模型理论、代数和几何
  • 批准号:
    0513494
  • 财政年份:
    2004
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant
Model Theory, Algebra and Geometry
模型理论、代数和几何
  • 批准号:
    0303618
  • 财政年份:
    2003
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Standard Grant

相似海外基金

Analysis of roles of HIF-2a in odontoblast differentiation for regeneration of tooth germs using iPS cells.
使用 iPS 细胞分析 HIF-2a 在成牙本质细胞分化和牙胚再生中的作用。
  • 批准号:
    19K24085
  • 财政年份:
    2019
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Large-scale preparation of hair follicle germs and its application for hair regenerative medicine
毛囊菌的大规模制备及其在毛发再生医学中的应用
  • 批准号:
    16K14489
  • 财政年份:
    2016
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Drugs, Germs, and Joints: Antibiotics, Gut Microbiota, and Juvenile Idiopathic Arthritis
药物、细菌和关节:抗生素、肠道微生物群和幼年特发性关节炎
  • 批准号:
    9353294
  • 财政年份:
    2016
  • 资助金额:
    $ 16.2万
  • 项目类别:
Drugs, Germs, and Joints: Antibiotics, Gut Microbiota, and Juvenile Idiopathic Arthritis
药物、细菌和关节:抗生素、肠道微生物群和幼年特发性关节炎
  • 批准号:
    9164039
  • 财政年份:
    2016
  • 资助金额:
    $ 16.2万
  • 项目类别:
Good germs, bad germs: A participatory model for mapping the domestic microbiome
好细菌,坏细菌:绘制国内微生物组图谱的参与式模型
  • 批准号:
    ES/N006968/1
  • 财政年份:
    2016
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Research Grant
Elucidation of construction mechanism of extracellular environment around tooth germs via proteoglycan
通过蛋白多糖阐明牙胚周围细胞外环境的构建机制
  • 批准号:
    26462777
  • 财政年份:
    2014
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of periodontal regenerative materials using mesenchymal stem cells in human wisdom tooth germs
利用人类智齿胚间充质干细胞开发牙周再生材料
  • 批准号:
    20791380
  • 财政年份:
    2008
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The in vitro and in vivo study on effects of growth factor on tooth germs
生长因子对牙胚影响的体内外研究
  • 批准号:
    18592021
  • 财政年份:
    2006
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a gene transfer method in utero and a culture method for reconstructed hair germs for study of the process of hair development
开发子宫内基因转移方法和重建毛胚培养方法以研究毛发发育过程
  • 批准号:
    13670887
  • 财政年份:
    2001
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-collagenous proteins in the apical portion of the forming root in porcine permanent incisor tooth germs
猪恒门牙牙胚形成根尖部的非胶原蛋白
  • 批准号:
    11671859
  • 财政年份:
    1999
  • 资助金额:
    $ 16.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了