Foundations of Asymptotic Differential Algebra
渐近微分代数基础
基本信息
- 批准号:0556197
- 负责人:
- 金额:$ 15.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2012-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aschenbrenner proposes to contribute to the fields of model theory and algebra. He proposes to continue his collaborative efforts to create a synthesis between the fields of real algebraic geometry and differential algebra, in the form of asymptotic differential algebra. This will lead to a deeper understanding of the model-theoretic and algebraic properties of Hardy fields and fields of transseries, and the relationship between them, and will open up new perspectives in the asymptotic theory of algebraic differential equations. He also proposes to continue his investigations into non-standard methods and degree bounds in commutative algebra. For example, Aschenbrenner proposes to increase our knowledge about Grobner bases for ideals in the ring of polynomials with integral coefficients.Mathematical logic, although it originated in the late 19th century with philosophical investigations into the foundations of mathematics, has in recent decades found many applications in other parts of mathematics, in computer science, and even in engineering (quantifier elimination as it relates to robotics). This project deals mainly with pushing the applicability of the methods of mathematical logic into as of yet unexplored territory, namely, asymptotic analysis. Our hope is that these investigations will lead to a deeper understanding of the behavior of solutions to differential equations. Another part of the proposed project involves the construction and analysis of algorithms for algebraic problems. Finding degree bounds as suggested in this project is of central importance for applications of computer algebra in science and engineering.
Aschenbrenner建议有助于模型理论和代数领域。他建议继续他的合作努力,创造一个综合领域之间的真实的代数几何和微分代数,在形式的渐近微分代数。 这将导致更深入地了解哈代场和transseries场的模型理论和代数性质,以及它们之间的关系,并将开辟新的视角在渐近理论的代数微分方程。他还建议继续他的调查非标准的方法和程度界限交换代数。例如,Aschenbrenner建议增加我们对整数系数多项式环中理想的Grobner基的知识。数理逻辑虽然起源于19世纪后期对数学基础的哲学研究,但在最近几十年里在数学的其他部分,计算机科学,甚至工程学(与机器人技术有关的量词消除)中找到了许多应用。这个项目主要涉及将数理逻辑方法的适用性推进到尚未探索的领域,即渐近分析。我们的希望是,这些调查将导致更深入地了解微分方程的解决方案的行为。该项目的另一部分涉及代数问题算法的构建和分析。 找到本项目中建议的学位界限对于计算机代数在科学和工程中的应用至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthias Aschenbrenner其他文献
THE NUMBER OF (cid:70) q -POINTS ON DIAGONAL HYPERSURFACES WITH MONOMIAL DEFORMATION
单项变形对角超曲面上 (cid:70) q 点的数量
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
D. E. M. C. C. Arthy;Matthias Aschenbrenner;Paul Balmer;Vyjayanthi Chari;Atsushi Ichino;Robert Lipshitz;Kefeng Liu;Dimitri Shlyakhtenko;Paul Yang;Ruixiang Zhang - 通讯作者:
Ruixiang Zhang
AN ELIMINATION THEOREM FOR MIXED REAL-INTEGER SYSTEMS
混合实整数系统的消除定理
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Matthias Aschenbrenner - 通讯作者:
Matthias Aschenbrenner
Asymptotic Differential Algebra and Model Theory of Transseries
渐近微分代数与跨系列模型论
- DOI:
10.23943/princeton/9780691175423.001.0001 - 发表时间:
2015 - 期刊:
- 影响因子:0.8
- 作者:
Matthias Aschenbrenner;L. Dries;J. Hoeven - 通讯作者:
J. Hoeven
Michael’s Selection Theorem in a semilinear context
半线性背景下的迈克尔选择定理
- DOI:
10.1515/advgeom-2015-0018 - 发表时间:
2015 - 期刊:
- 影响因子:0.5
- 作者:
Matthias Aschenbrenner;Athipat Thamrongthanyalak - 通讯作者:
Athipat Thamrongthanyalak
Lefschetz extensions, tight closure and big Cohen-Macaulay algebras
Lefschetz 扩展、紧闭合和大 Cohen-Macaulay 代数
- DOI:
10.1007/s11856-007-0080-0 - 发表时间:
2004 - 期刊:
- 影响因子:1
- 作者:
Matthias Aschenbrenner;H. Schoutens - 通讯作者:
H. Schoutens
Matthias Aschenbrenner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthias Aschenbrenner', 18)}}的其他基金
相似海外基金
Asymptotic Analysis of Geometric Partial Differential Equations
几何偏微分方程的渐近分析
- 批准号:
2305038 - 财政年份:2023
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 15.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Asymptotic analysis of quasilinear ordinary differential equations and its application to partial differential equations
拟线性常微分方程的渐近分析及其在偏微分方程中的应用
- 批准号:
21K03307 - 财政年份:2021
- 资助金额:
$ 15.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855185 - 财政年份:2019
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Collaborative Research: Asymptotic Geometry and Analysis of Stochastic Partial Differential Equations
合作研究:渐近几何与随机偏微分方程分析
- 批准号:
1855439 - 财政年份:2019
- 资助金额:
$ 15.83万 - 项目类别:
Standard Grant
Structural conditions for global existence of solutions and the asymptotic behavior of global solutions for systems of nonlinear partial differential equations related to nonlinear waves
与非线性波相关的非线性偏微分方程组解全局存在的结构条件和全局解的渐近行为
- 批准号:
18H01128 - 财政年份:2018
- 资助金额:
$ 15.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
- 批准号:
1807748 - 财政年份:2017
- 资助金额:
$ 15.83万 - 项目类别:
Continuing Grant
Asymptotic behavior of solutions for differential equations with phi-Laplacian
具有 phi-拉普拉斯算子的微分方程解的渐近行为
- 批准号:
17J00259 - 财政年份:2017
- 资助金额:
$ 15.83万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Asymptotic Problems of Partial Differential Equations with Random Coefficients: Homogenization and Beyond
具有随机系数的偏微分方程的渐近问题:齐次化及其他
- 批准号:
1613301 - 财政年份:2016
- 资助金额:
$ 15.83万 - 项目类别:
Continuing Grant
Asymptotic profile of solutions for some partial differential equations with dissipative structure and its application
一些具有耗散结构的偏微分方程解的渐近廓线及其应用
- 批准号:
15K04958 - 财政年份:2015
- 资助金额:
$ 15.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




