UNS: Developing Quantitative Models of SHP2-Mediated Signaling regulation in Glioma for Rational Identification of Improved Therapeutic Approaches.

UNS:开发神经胶质瘤中 SHP2 介导的信号传导调节的定量模型,以合理识别改进的治疗方法。

基本信息

  • 批准号:
    1700687
  • 负责人:
  • 金额:
    $ 30.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

1511853Lazzara, Matthew J. Glioblastoma multiforme (GBM) is the most common cancer of the brain, with an average survival time of just 14 months. In this project a large data set will be collected to probe how GBM cells respond to different therapeutics when the protein tyrosine phosphatase SHP2 is present at normal or reduced levels. Activation states of numerous signaling proteins will be measured in parallel. These data will be used to generate a computational model to predict which druggable proteins to inhibit in order to antagonize the aspects of SHP2 regulation in GBM tumors that promote tumor growth and therapeutic resistance. Model predictions will be tested first in cell culture and ultimately in mouse models of GBM. This approach has not been employed previously to study GBM and will leverage the new understanding of how SHP2 impacts GBM tumor behaviors. The research is anticipated to generate important new insights that may eventually be leveraged to improve clinical outcomes for the 14,000 patients diagnosed with GBM in the U.S. each year. The work will also validate the proposed approach to translate information on the function of a non-druggable protein into immediately actionable therapeutic strategies.Glioblastoma multiforme (GBM) is the most common malignancy of the brain. GBM tumors are resistant to chemotherapy, radiation, and targeted inhibitors of oncogenic kinases, and new therapeutic approaches are desperately needed. Data from the lab of the Principal Investigator (PI) show that the protein tyrosine phosphatase SHP2 controls GBM cell signaling in ways that could potentially be leveraged to design improved therapeutic approaches for GBM. However, the data also suggest this will not be straightforward because SHP2 simultaneously exerts positive and negative regulatory effects over proliferation and survival signaling. The net effect is that SHP2 expression simultaneously drives cellular proliferation but also promotes death in response to certain therapeutics in GBM cell lines, effects which may seem to conflict with each other. Moreover, the signaling processes regulated by SHP2 in GBM cells and tumors have not yet been fully identified. Thus, the path forward is not simply to inhibit SHP2 and all its functions broadly, but rather to systematically evaluate the signaling pathways regulated by SHP2 in GBM and to quantitatively map the functions of those pathways to GBM phenotypes of interest. Ultimately, this approach will identify a subset of signaling pathways in the SHP2-regulated signaling network whose selective inhibition will slow GBM tumor growth and augment response to therapeutics. In this research, a partial least squares regression (PLSR) computational modeling approach will be used to map multivariate signaling events regulated by SHP2 to specific GBM cell and tumor phenotypes of interest. PLSR is robust enough to capture the complexity and cell context-dependence of the trends revealed by the preliminary data. PLSR has been successfully utilized to dissect signaling/phenotype relationships in other cellular systems but has never been applied to rationally identify a subset of useful druggable signaling nodes downstream of a presently non-druggable protein such as SHP2 in GBM or other cancers. Ultimately, this project will identify a new set of therapeutic targets in glioblastoma, produce substantial new biological understanding about the role of SHP2 in glioblastoma, and validate a general proposed method for circumventing limitations that may exist for directly therapeutically targeting a specific protein known to be important in disease. The project also includes a set of integrated educational objectives to reach students from diverse backgrounds by leveraging the PI's existing educational programs and outreach efforts with high school students and science educational facilities.This award by the Biotechnology and Biochemical Engineering Program of the CBET Division is co-funded by the Systems and Synthetic Biology Program of the Division of Molecular and Cellular Biology.
[11853] lazzara, Matthew J.多形性胶质母细胞瘤(GBM)是最常见的脑癌,平均生存时间仅为14个月。在这个项目中,将收集大量的数据集来探索当蛋白酪氨酸磷酸酶SHP2处于正常或降低水平时,GBM细胞如何对不同的治疗方法做出反应。许多信号蛋白的激活状态将被并行测量。这些数据将用于生成一个计算模型,以预测抑制哪些可药物蛋白,以拮抗GBM肿瘤中促进肿瘤生长和治疗耐药性的SHP2调控方面。模型预测将首先在细胞培养中进行测试,最终在GBM小鼠模型中进行测试。这种方法以前没有被用于GBM的研究,它将利用SHP2如何影响GBM肿瘤行为的新认识。这项研究有望产生重要的新见解,最终可能用于改善美国每年14000名被诊断为GBM的患者的临床结果。这项工作还将验证所提出的方法,将非药物蛋白质的功能信息转化为立即可操作的治疗策略。多形性胶质母细胞瘤(GBM)是脑部最常见的恶性肿瘤。GBM肿瘤对化疗、放疗和靶向肿瘤激酶抑制剂具有耐药性,迫切需要新的治疗方法。来自首席研究员(PI)实验室的数据表明,蛋白酪氨酸磷酸酶SHP2控制GBM细胞信号传导的方式可能被利用来设计改进的GBM治疗方法。然而,数据也表明,这并不简单,因为SHP2同时对增殖和存活信号发挥积极和消极的调节作用。净效应是SHP2的表达在促进细胞增殖的同时,也促进了GBM细胞系对某些治疗反应的死亡,两者的作用似乎是相互冲突的。此外,SHP2在GBM细胞和肿瘤中调控的信号传导过程尚未完全确定。因此,未来的研究路径不是简单地广泛抑制SHP2及其所有功能,而是系统地评估SHP2在GBM中调节的信号通路,并定量地将这些通路的功能映射到感兴趣的GBM表型。最终,该方法将确定shp2调控的信号网络中的信号通路子集,其选择性抑制将减缓GBM肿瘤的生长并增强对治疗的反应。在本研究中,将使用偏最小二乘回归(PLSR)计算建模方法将SHP2调节的多变量信号事件映射到特定的GBM细胞和感兴趣的肿瘤表型。PLSR足够强大,可以捕捉到初步数据所揭示的趋势的复杂性和细胞环境依赖性。PLSR已被成功地用于解剖其他细胞系统中的信号/表型关系,但从未被应用于合理地鉴定目前非药物蛋白(如GBM或其他癌症中的SHP2)下游的有用的可药物信号节点子集。最终,该项目将在胶质母细胞瘤中确定一组新的治疗靶点,对SHP2在胶质母细胞瘤中的作用产生实质性的新的生物学理解,并验证一种普遍提出的方法,以绕过可能存在的直接治疗疾病中已知重要的特定蛋白质的限制。该项目还包括一套综合教育目标,通过利用PI现有的教育计划和与高中生和科学教育设施的推广工作,为来自不同背景的学生提供服务。该奖项由CBET部门的生物技术和生化工程项目颁发,由分子和细胞生物学部门的系统和合成生物学项目共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Lazzara其他文献

An extreme precipitation event over Dronning Maud Land, East Antarctica - A case study of an atmospheric river event using the Polar WRF Model
  • DOI:
    10.1016/j.atmosres.2024.107724
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sibin Simon;John Turner;Thamban Meloth;Pranab Deb;Irina V. Gorodetskaya;Matthew Lazzara
  • 通讯作者:
    Matthew Lazzara
Promoting receptor protein tyrosine phosphatase activity by targeting transmembrane domain interactions
  • DOI:
    10.1016/j.bpj.2021.11.2279
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Eden Sikorski;Sophia Rizzo;Jacqueline Gerritsen;Forest White;Matthew Lazzara;Damien Thevenin
  • 通讯作者:
    Damien Thevenin
Synergistic activity of simvastatin and irinotecan chemotherapy against glioblastoma converges on TGF-β signaling
  • DOI:
    10.1007/s11060-025-05089-8
  • 发表时间:
    2025-05-28
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Niket Yadav;Aizhen Xiao;Qing Zhong;Pankaj Kumar;Guruprasad Konduru;William Hart;Matthew Lazzara;Benjamin Purow
  • 通讯作者:
    Benjamin Purow

Matthew Lazzara的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Lazzara', 18)}}的其他基金

Collaborative Research: The Automatic Weather Station Program: Antarctic Meteorological Sentinel Service 2024-2027
合作研究:自动气象站计划:南极气象哨兵服务2024-2027
  • 批准号:
    2301362
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Antarctic Meteorological Research and Data Center
合作研究:南极气象研究与数据中心
  • 批准号:
    1951603
  • 财政年份:
    2020
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Continuing Grant
Collaborative Research: Antarctic Automatic Weather Station Program 2019-2022
合作研究:南极自动气象站计划2019-2022
  • 批准号:
    1924730
  • 财政年份:
    2019
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Observing the Atmospheric Boundary over the West Antarctic Ice Sheet
合作研究:观测南极西部冰盖的大气边界
  • 批准号:
    1744878
  • 财政年份:
    2018
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Modeling Spatiotemporal Control of EGFR-ERK Signaling in Gene-edited Cell Systems
合作研究:基因编辑细胞系统中 EGFR-ERK 信号传导的时空控制建模
  • 批准号:
    1716537
  • 财政年份:
    2017
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Optimized Deployment of Antarctic Surface Weather Observations
合作研究:南极表面天气观测的优化部署
  • 批准号:
    1542789
  • 财政年份:
    2016
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
MRI: Development of a Modern Polar Climate and Weather Automated Observing System
MRI:现代极地气候和天气自动观测系统的开发
  • 批准号:
    1625904
  • 财政年份:
    2016
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Engineering Proteins for Reabsorption in the Renal Proximal Tubule
用于肾近端小管重吸收的工程蛋白
  • 批准号:
    1714588
  • 财政年份:
    2016
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Antarctic Automatic Weather Station Program 2016-2019
合作研究:2016-2019年南极自动气象站计划
  • 批准号:
    1543305
  • 财政年份:
    2016
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
UNS: Developing Quantitative Models of SHP2-Mediated Signaling regulation in Glioma for Rational Identification of Improved Therapeutic Approaches.
UNS:开发神经胶质瘤中 SHP2 介导的信号传导调节的定量模型,以合理识别改进的治疗方法。
  • 批准号:
    1511853
  • 财政年份:
    2015
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant

相似海外基金

Developing and validating a quantitative measure of daily intersectional stigma experiences for Black people with disabilities
制定并验证残疾黑人日常交叉耻辱经历的定量衡量标准
  • 批准号:
    10771704
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
Developing Electrochemical Sensors to Enable Quantitative Measure of Gliotransmitter Release from Astrocytes
开发电化学传感器以定量测量星形胶质细胞释放的胶质递质
  • 批准号:
    10752836
  • 财政年份:
    2023
  • 资助金额:
    $ 30.61万
  • 项目类别:
Developing quantitative continuum theories of composite active fluids
发展复合活性流体的定量连续理论
  • 批准号:
    2202353
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
  • 批准号:
    10467144
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
Developing a Quantitative Diffusion Magnetic Resonance Imaging Protocol to characterize cellular death and tissue microstructure
开发定量扩散磁共振成像方案来表征细胞死亡和组织微观结构
  • 批准号:
    546780-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
The EdvoReader: Developing a Quantitative PCR and Colorimetry Instrument for Laboratory Skills Training
EdvoReader:开发用于实验室技能培训的定量 PCR 和比色仪
  • 批准号:
    10760647
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
Developing A Quantitative, Multiscale Imaging Approach to Identify Peripheral Mechanisms of Noxious and Innocuous Force Encoding in Mouse Models
开发定量、多尺度成像方法来识别小鼠模型中有害和无害力编码的外围机制
  • 批准号:
    10610468
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
Developing a Statewide Professional Development Network for Effective Teaching of Undergraduate Quantitative Reasoning Course
建立全州专业发展网络,以实现本科定量推理课程的有效教学
  • 批准号:
    2216197
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
    Standard Grant
Developing a Quantitative Assessment Tool for Characterizing Social Domains
开发用于表征社会领域的定量评估工具
  • 批准号:
    10586621
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
Developing a quantitative ultrasound breast scanner for identifying early response of breast cancer to chemotherapy
开发定量超声乳腺扫描仪来识别乳腺癌对化疗的早期反应
  • 批准号:
    10686414
  • 财政年份:
    2022
  • 资助金额:
    $ 30.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了