CAREER: An Integrated Hybrid Forecasting Framework for Increased Wind Power Penetration

职业生涯:提高风电渗透率的综合混合预测框架

基本信息

  • 批准号:
    1700753
  • 负责人:
  • 金额:
    $ 16.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

The goal of the proposed research is to develop the next generation of algorithms to achieve significant improvement in short-term wind forecasting. Our inability to accurately capture non-Gaussian uncertainty of wind in high dimensional spaces translates to low predictability; high risk and the need for expensive balancing power resources. It is thus a primary objective of the proposed research is to significantly improve wind forecasts upto 48 hours in advance, leading to enhanced dispatch, scheduling and unit commitment operations in the day-ahead electricity market.Intellectual Merit: The proposed research will develop an integrated framework of randomized algorithms for scalable nonlinear uncertainty propagation. Algorithm output will be combined with measured on-site data in the sense of Bayesian fusion, leading to a hybrid forecasting structure. The main technical challenges are: (i) complex wind dynamics due to multiple temporal and spatial scales, turbulence and orographic effects; (ii) non-Gaussian wind uncertainty; (iii) need for scalable algorithms due to high dimensionality; and (iv) need for fusion of information arriving from multiple algorithms and heterogeneous measurement sources. The proposed framework will have the following key features to meet these challenges: (1) formulation of the wind state as a stochastic hybrid process, governed by multiple reduced ordermicro and mesoscale models; (2) a novel randomized particle uncertainty propagation approach based on the method of characteristics, Markov chain Monte-Carlo and the Karhunen-Lo`eve expansion. Practical effectiveness of developed algorithms will be measured against data from two wind-farms: the Cohocton Wind Farm/NY and the Roscoe Wind Farm/TX.Broader Impact: The proposed forecasting framework will lead to increased penetration of wind power by reducing the risks currently associated with it; and enable us to achieve our global targets of reducing dependence on fossil-fuel based electricity. The education plan includes training high school teachers in the multidisciplinary area of sustainable energy who will in turn reach thousands of students.
拟议研究的目标是开发下一代算法,以实现短期风速预报的显著改进。我们无法准确捕捉高维空间中风的非高斯不确定性,这意味着低可预测性、高风险和对昂贵的平衡功率资源的需求。因此,拟议研究的一个主要目标是显著提高提前48小时的风力预报,从而增强未来电力市场的调度、调度和机组组合操作。智力优势:拟议的研究将为可扩展的非线性不确定性传播开发一个随机化算法的集成框架。算法输出将与现场实测数据在贝叶斯融合意义上相结合,形成一种混合预测结构。主要的技术挑战是:(I)由于多个时间和空间尺度、湍流和地形效应而导致的复杂的风动力学;(Ii)非高斯风的不确定性;(Iii)由于高维而需要可伸缩的算法;以及(Iv)需要融合来自多个算法和不同测量源的信息。所提出的框架将具有以下关键特征来应对这些挑战:(1)将风状态描述为一个随机混合过程,由多个降阶微观和中尺度模式控制;(2)基于特征线法、马尔可夫链蒙特卡罗方法和卡尔胡宁-罗伊夫展开法的新的随机粒子不确定性传播方法。开发的算法的实际有效性将根据两个风力发电场的数据进行衡量:Cohocton Wind Farm/NY和Roscoe Wind Farm/TX.广泛影响:拟议的预测框架将通过降低目前相关的风险来提高风力发电的普及率;并使我们能够实现减少对化石燃料电力的依赖的全球目标。教育计划包括在可持续能源的多学科领域培训高中教师,这些教师将反过来接触到数千名学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mrinal Kumar其他文献

An exponential lower bound for homogeneous depth-5 circuits over finite fields
有限域上齐次深度 5 电路的指数下界
Hardness-Randomness Tradeoffs for Algebraic Computation
代数计算的硬度-随机权衡
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mrinal Kumar;Ramprasad Saptharishi
  • 通讯作者:
    Ramprasad Saptharishi
A MCMC/Bernstein approach to chance constrained programs
MCMC/Bernstein 解决机会受限项目的方法
  • DOI:
    10.1109/acc.2014.6859159
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zinan Zhao;Mrinal Kumar
  • 通讯作者:
    Mrinal Kumar
Surgical Management of Metastatic Colorectal Cancer: A Single-Centre Experience on Oncological Outcomes of Pulmonary Resection vs Cytoreductive Surgery and HIPEC
转移性结直肠癌的手术治疗:肺切除术与细胞减灭术和 HIPEC 肿瘤学结果的单中心经验
  • DOI:
    10.1007/s12029-016-9895-4
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    E. Wong;G. Tan;D. Ng;T. Koh;Mrinal Kumar;M. Teo
  • 通讯作者:
    M. Teo
Wildland Fire Rate of Spread Estimation Using an Autonomous Unmanned Aerial System: A Case Study
使用自主无人机系统进行荒地火势蔓延估计:案例研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bryce T. Ford;Joon Tai Kim;Ziyu Dong;Roger Williams;Mrinal Kumar
  • 通讯作者:
    Mrinal Kumar

Mrinal Kumar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mrinal Kumar', 18)}}的其他基金

Collaborative Research: NRI: Integration of Autonomous UAS in Wildland Fire Management
合作研究:NRI:自主无人机在荒地火灾管理中的整合
  • 批准号:
    2132798
  • 财政年份:
    2022
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Standard Grant
CAREER: An Integrated Hybrid Forecasting Framework for Increased Wind Power Penetration
职业生涯:提高风电渗透率的综合混合预测框架
  • 批准号:
    1254244
  • 财政年份:
    2013
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Standard Grant

相似国自然基金

greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated) 行为和精细行为评价体系的构建
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
  • 批准号:
    2344664
  • 财政年份:
    2024
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Standard Grant
FAULT LOCATING INTEGRATED HYBRID HARNESS TEST SYSTEM (FLIHHTS)
故障定位集成混合线束测试系统 (FLIHHTS)
  • 批准号:
    10078969
  • 财政年份:
    2023
  • 资助金额:
    $ 16.35万
  • 项目类别:
    BEIS-Funded Programmes
Topological wave manipulation in hybrid integrated platforms
混合集成平台中的拓扑波操纵
  • 批准号:
    FT230100058
  • 财政年份:
    2023
  • 资助金额:
    $ 16.35万
  • 项目类别:
    ARC Future Fellowships
Development of hybrid thermal model for small bodies integrated shape and roughness models
开发小型物体集成形状和粗糙度模型的混合热模型
  • 批准号:
    23K03478
  • 财政年份:
    2023
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DMREF: Magneto-electro-optically coupled hybrid metamaterial thin film platform for photonic integrated circuits
DMREF:用于光子集成电路的磁电光耦合混合超材料薄膜平台
  • 批准号:
    2323752
  • 财政年份:
    2023
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Standard Grant
Development of nanowire hybrid integrated devices
纳米线混合集成器件的开发
  • 批准号:
    22H00202
  • 财政年份:
    2022
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Methods for Modular Integrated Hybrid Life Cycle Assessment
模块化集成混合生命周期评估方法
  • 批准号:
    RGPIN-2017-06956
  • 财政年份:
    2022
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Integrated Numerical Modeling and Field Observations of Hurricane Impacts to Natural and Hybrid Infrastructure
合作研究:飓风对自然和混合基础设施影响的综合数值模拟和现场观测
  • 批准号:
    2139883
  • 财政年份:
    2022
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Standard Grant
Collaborative Research: Integrated Numerical Modeling and Field Observations of Hurricane Impacts to Natural and Hybrid Infrastructure
合作研究:飓风对自然和混合基础设施影响的综合数值模拟和现场观测
  • 批准号:
    2139882
  • 财政年份:
    2022
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Standard Grant
SaTC: TTP: Medium: Hardware Intellectual Property Protection through Hybrid ASIC/TRAP Integrated Circuit Design
SaTC:TTP:中:通过混合 ASIC/TRAP 集成电路设计保护硬件知识产权
  • 批准号:
    2155208
  • 财政年份:
    2022
  • 资助金额:
    $ 16.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了