Collaborative Research: Musculoskeletal Model for Dynamic Manual Material Handling to Prevent Injury
合作研究:用于动态手动物料搬运以防止受伤的肌肉骨骼模型
基本信息
- 批准号:1700865
- 负责人:
- 金额:$ 30.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PIs: Xiang, Yujang/Yang, James Proposals: 1700865/1703093Currently available safety evaluation tools for manual material handling are based on static lifting conditions, such as the NIOSH lifting equation, which gives a subject's maximum lifting weight, distance and height for static lifting. Another popular method for evaluating injury risk for manual material handling is to measure the lumbar spine stress for back pain. However, these methods are all static and cannot accurately reflect dynamic motion generation and injury prevention. Using biomechanical models provides relatively new, alternative techniques that allow direct testing and individualized results. In this collaborative project, the PIs will develop a predictive lumbar spine musculoskeletal model for a dynamic manual material handling. The project aims to develop an efficient tool for injury risk assessment and prediction in dynamic lifting process. Project results will have potentially wide application in manual material handling ergonomics and will further advance lifting biomechanics. The project includes education opportunities for both undergraduate and graduate students. A two-week summer workshop will be offered to underserved minority middle and high school students at University of Alaska Fairbanks in collaboration with the Alaska Summer Research Academy. Another week-long summer workshop will be offered to local workers with lifting jobs and Hispanic middle school students at Texas Tech University.The project focuses on developing an inverse dynamics optimization-based (predictive dynamics) method for dynamic manual material handling using a musculoskeletal model with dynamic strength data. Dynamic strength data will be developed for key joints, such as the knee, hip, ankle, elbow and lower spine. The tool developed for predicting injury events in dynamic lifting systems will advance the current offline procedure to an online, near real-time optimal motion control and injury prevention system. Injury is defined in two ways: by measuring lumbar spine compression and shear stresses using a musculoskeletal model, and, in joint space, by measuring the percentage of joint torque for key joints to predict injury. Specific objectives are to: 1) derive a general dynamic strength model and validate the model parameters from experiments; 2) introduce and experimentally validate a lumbar spine muscle model; and 3) implement these models with a nonlinear programming algorithm to optimize the dynamic lifting motion during manual material handling for minimum injury and experimentally demonstrate proof-of-concept. Muscle intra/inter-joint coupling will be modeled and the lumbar spine area will be added, thereby generating a musculoskeletal model to measure lumbar stresses for back pain in the dynamic lifting process. The dynamic strength parameters in joint space estimated from active human subjects will provide the model with improved accuracy and efficient calculations that can be used to evaluate injury for complex non-periodic functional tasks that may not be experimentally verifiable by traditional means. The model, which enables near real-time calculations of dynamic manual material handling as a function of time, can be used to establish an individual-specific dynamic limiting lifting process, as well as optimal strategy for lifting. Project results will serve as new guidelines for manual material handling ergonomic design, considering dynamic effects. In addition, better understanding of various constraints in optimization formulation inherent in the human physiological system, as well as motion adaptation to these constraints, will contribute to the field of human locomotion study and complement existing design principles for manual material handling.
PI:Xiang,Yujang/Yang,James建议:1700865/1703093目前可用的手动物料搬运安全评估工具基于静态提升条件,例如NIOSH提升方程,该方程给出了受试者静态提升的最大提升重量、距离和高度。另一种流行的方法来评估受伤的风险,手动材料处理是测量腰椎应力背痛。然而,这些方法都是静态的,不能准确地反映动态运动生成和伤害预防。使用生物力学模型提供了相对较新的替代技术,允许直接测试和个性化结果。在这个合作项目中,PI将开发一个预测腰椎肌肉骨骼模型,用于动态手动材料处理。本项目旨在开发一种有效的动态提升过程伤害风险评估和预测工具。 项目结果将在人工物料搬运人机工程学中有潜在的广泛应用,并将进一步推进起重生物力学。该项目包括为本科生和研究生提供教育机会。将与阿拉斯加夏季研究学院合作,在阿拉斯加大学费尔班克斯为服务不足的少数民族初中和高中学生举办为期两周的夏季讲习班。此外,还将为当地从事起重工作的工人和德州理工大学的西班牙裔中学生举办为期一周的夏季研讨会。该项目的重点是开发一种基于逆动力学优化(预测动力学)的方法,用于使用动态强度数据的肌肉骨骼模型进行动态手动材料搬运。 动态强度数据将开发关键关节,如膝盖,臀部,脚踝,肘部和下脊柱。开发的用于预测动态提升系统中的伤害事件的工具将把当前的离线过程推进到在线、近实时的最佳运动控制和伤害预防系统。损伤的定义有两种方式:通过使用肌肉骨骼模型测量腰椎压缩和剪切应力,以及在关节间隙中,通过测量关键关节的关节扭矩百分比来预测损伤。具体目标是:1)导出通用动态强度模型并从实验中验证模型参数; 2)引入腰椎肌肉模型并通过实验验证该模型;以及3)利用非线性规划算法来实现这些模型,以优化手动材料处理期间的动态提升运动,从而最小化损伤,并通过实验证明概念验证。将对关节内/关节间肌肉耦合进行建模,并添加腰椎区域,从而生成肌肉骨骼模型,以测量动态提升过程中背痛的腰椎应力。从活跃的人类受试者估计的关节空间中的动态强度参数将为模型提供改进的准确性和有效的计算,其可用于评估复杂的非周期性功能任务的损伤,这些任务可能无法通过传统手段进行实验验证。该模型,它使近实时计算的动态手动材料处理作为时间的函数,可用于建立一个个人特定的动态限制提升过程,以及最佳的提升策略。项目结果将作为新的指导方针,人工材料处理人体工程学设计,考虑动态效应。此外,更好地理解在优化制定固有的人体生理系统中的各种约束,以及对这些约束的运动适应,将有助于人类运动研究领域,并补充现有的设计原则,手动材料处理。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Subject-specific strength percentile determination for two-dimensional symmetric lifting considering dynamic joint strength
考虑动态关节强度的二维对称提升的特定主题强度百分位确定
- DOI:10.1007/s11044-018-09661-1
- 发表时间:2019
- 期刊:
- 影响因子:3.4
- 作者:Xiang, Yujiang;Zaman, Rahid;Rakshit, Ritwik;Yang, James
- 通讯作者:Yang, James
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yujiang Xiang其他文献
Lifting Motion Prediction Models: A Case Study
提升运动预测模型:案例研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rahid Zaman;Yujiang Xiang;Jazmin Cruz;James Yang - 通讯作者:
James Yang
Sensitivity analysis and sensor placement for damage identification of steel truss bridge
钢桁架桥损伤识别的灵敏度分析与传感器布置
- DOI:
10.1016/j.istruc.2025.108310 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.300
- 作者:
Yuxue Mao;Feng Xiao;Geng Tian;Yujiang Xiang - 通讯作者:
Yujiang Xiang
Yujiang Xiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yujiang Xiang', 18)}}的其他基金
Collaborative Research: Joint Space Muscle Fatigue Model and Integration into Full Body Motion Prediction for Repetitive Dynamic Tasks
合作研究:关节空间肌肉疲劳模型并集成到重复动态任务的全身运动预测中
- 批准号:
2014281 - 财政年份:2020
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
Collaborative Research: Musculoskeletal Model for Dynamic Manual Material Handling to Prevent Injury
合作研究:用于动态手动物料搬运以防止受伤的肌肉骨骼模型
- 批准号:
1849279 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: The Effects of Musculoskeletal Design on Bipedal Walking and Running Performance
合作研究:肌肉骨骼设计对双足步行和跑步表现的影响
- 批准号:
2018436 - 财政年份:2021
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
Collaborative Research: The Effects of Musculoskeletal Design on Bipedal Walking and Running Performance
合作研究:肌肉骨骼设计对双足步行和跑步表现的影响
- 批准号:
2018523 - 财政年份:2021
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
Collaborative Research: Evolving the mammalian forelimb: modeling musculoskeletal transformation in the forerunners of mammals
合作研究:哺乳动物前肢的进化:模拟哺乳动物先行者的肌肉骨骼转化
- 批准号:
1754502 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
Collaborative Research: Evolving the mammalian forelimb: modeling musculoskeletal transformation in the forerunners of mammals
合作研究:哺乳动物前肢的进化:模拟哺乳动物先行者的肌肉骨骼转化
- 批准号:
1754459 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
Collaborative Research: Musculoskeletal Model for Dynamic Manual Material Handling to Prevent Injury
合作研究:用于动态手动物料搬运以防止受伤的肌肉骨骼模型
- 批准号:
1849279 - 财政年份:2018
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
Collaborative Research: Musculoskeletal Model for Dynamic Manual Material Handling to Prevent Injury
合作研究:用于动态手动物料搬运以防止受伤的肌肉骨骼模型
- 批准号:
1703093 - 财政年份:2017
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
Collaborative Research: Multi-Domain Computational Framework for Simulating Musculoskeletal Systems
合作研究:模拟肌肉骨骼系统的多领域计算框架
- 批准号:
0966535 - 财政年份:2010
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
RUI: COLLABORATIVE RESEARCH. Non-uniform distribution of muscle fiber strain in squid mantle muscle: implications for musculoskeletal system structure, function, and evolution.
芮:合作研究。
- 批准号:
0951067 - 财政年份:2010
- 资助金额:
$ 30.92万 - 项目类别:
Continuing Grant
Collaborative Research: Multi-Domain Computational Framework for Simulating Musculoskeletal Systems
合作研究:模拟肌肉骨骼系统的多领域计算框架
- 批准号:
0966742 - 财政年份:2010
- 资助金额:
$ 30.92万 - 项目类别:
Standard Grant
RUI: COLLABORATIVE RESEARCH. Non-uniform distribution of muscle fiber strain in squid mantle muscle: implications for musculoskeletal system structure, function, and evolution.
芮:合作研究。
- 批准号:
0950827 - 财政年份:2010
- 资助金额:
$ 30.92万 - 项目类别:
Continuing Grant