Collaborative Research: Joint Space Muscle Fatigue Model and Integration into Full Body Motion Prediction for Repetitive Dynamic Tasks
合作研究:关节空间肌肉疲劳模型并集成到重复动态任务的全身运动预测中
基本信息
- 批准号:2014281
- 负责人:
- 金额:$ 29.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Worker fatigue increases the risk for illnesses and injuries. An estimated annual cost in the US of over $130 billion is from fatigue-related lost productive work time to employers, which indicates that fatigue needs to be considered during the workplace safety design process. Although different muscle fatigue models have been developed, all were applied to isometric contractions (contractions without muscle shortening), but the majority of everyday activities are involved in concentric (muscle contracts/shortens) and eccentric (muscle lengthens/returns to resting state) muscle movements, i.e., repetitive dynamic tasks. Conventional motion simulation approaches for injury prevention typically optimize a motion without considering muscle fatigue. Thus, the goal of this project is to address the need for a musculoskeletal model that can predict muscle movement considering muscle fatigue. The model can be adapted to the physical properties of an individual worker, e.g., height, weight, length of body segments, etc. The methods and associated numerical tools developed will be applicable to broad occupational health and safety designs such as lower back injury prevention for repetitive lifting and repetitive package handling in the delivery industry. The project will also enable education and training for undergraduates, graduate students, and store employees. Results will be integrated into courses for Biomechanics and Digital Human Modeling and made available for future generations of engineers. In addition, a week-long summer camp will be organized for local store managers with lifting jobs at Texas Tech University. For these managers this summer camp will help them to understand the injury mechanism and causes for injuries, contributing to their awareness of work-related injuries whenever employees conduct repetitive lifting tasks daily.The goal of this project is to develop a novel and efficient dynamic motion prediction tool considering muscle fatigue for repetitive dynamic tasks, which, if successful, will be the first full body biomechanics human model with this capability. The project’s objectives are to: develop: a new joint space muscle fatigue model for repetitive dynamic tasks; develop a new joint space predictive simulation method considering fatigue; and decompose the fatigued joint torques into fatigued muscle forces. The Research Plan is organized under 6 tasks. TASK 1 is to develop a three-compartment joint space fatigue model for repetitive tasks beginning with a 3D musculoskeletal model that has 30 DOFS, 21 segments, 324 musculotendon actuators and 5 lumbar vertebrae connected with 6 DOF joints. Fatigue is incorporated by bundling all muscles responsible for each joint into one virtual muscle with virtual units being divided into compartments depending on the state in which they are in: active, fatigued or resting. TASK 2 is to perform an inverse dynamics-based optimization without fatigue. The design variables for the skeleton optimization problem are joint angles from which joint torques can be computed. TASK 3 is to optimize join space motion prediction considering fatigue using collocation methods. The joint torques obtained under Task 2 will be used to calculate a “target load” vector that will be used to initiate the fatigue process. The optimization problem is to find the optimal joint angles, joint torques, joint resultant and virtual muscle active states that minimize the cost function of normalized joint torque squared subject to model dynamics equations of motion. TASK 4 is to find the lower extremity and lumbar spine model muscle forces corresponding to the fatigued joint torques using static optimization. Tasks 1-4 are interconnected elements of a complete nonlinear motion optimization considering muscle fatigue for dynamic tasks. TASK 5 is to collect experiment related data from 20 subjects (10 males and 10 females) of varying ages, statures, and BMIs. The data will be used to validate the joint space muscle fatigue model and skeletal motion prediction. TASK 6 is to validate the muscle fatigue model for repetitive dynamic tasks involving wrist, elbow, shoulder, trunk hip, knee and ankle joints and then to validate the 3D motion prediction model considering muscle fatigue during a repetitive box lifting process. For joint related validations, 8 subjects of each gender will be used to tune the model and the 2 remaining subjects will be used for validation. For 3D motion prediction validation, three aspects (muscle levels, joint profiles and ground reaction forces), model predictions will be compared to aspects determined from EMG and motion capture data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
工人疲劳会增加患病和受伤的风险。据估计,美国每年的成本超过1300亿美元,这是因为雇主失去了与疲劳相关的生产性工作时间,这表明在工作场所安全设计过程中需要考虑疲劳。虽然已经建立了不同的肌肉疲劳模型,但都被应用于等长收缩(没有肌肉缩短的收缩),但大多数日常活动涉及向心(肌肉收缩/缩短)和偏心(肌肉延长/恢复到静止状态)肌肉运动,即重复的动态任务。传统的预防损伤的运动模拟方法通常不考虑肌肉疲劳来优化运动。因此,这个项目的目标是解决对肌肉骨骼模型的需求,该模型可以预测考虑肌肉疲劳的肌肉运动。该模型可以适应单个工人的物理特性,例如身高、体重、身体部分的长度等。所开发的方法和相关的数值工具将适用于广泛的职业健康和安全设计,例如在快递业中重复抬起和重复处理包裹时防止下背部损伤。该项目还将为本科生、研究生和商店员工提供教育和培训。研究成果将被整合到生物力学和数字人体建模课程中,并提供给未来几代工程师。此外,还将为德克萨斯理工大学升职的当地商店经理组织为期一周的夏令营。对于这些管理者来说,这次夏令营将帮助他们了解受伤的机制和受伤的原因,有助于他们在员工每天进行重复的举重任务时提高对工伤的认识。本项目的目标是开发一种新颖而高效的动态运动预测工具,该工具考虑了重复动态任务中的肌肉疲劳,如果成功,将是第一个具有这种能力的全身生物力学人体模型。该项目的目标是:开发一种新的用于重复动态任务的关节空间肌肉疲劳模型;开发一种考虑疲劳的新的关节空间预测模拟方法;以及将疲劳的关节力矩分解为疲劳的肌力。研究计划分为6项任务。任务1是开发一个用于重复任务的三室关节空间疲劳模型,首先建立一个3D肌肉骨骼模型,该模型包含30个自由度、21个节段、324个肌腱致动器和5个腰椎,与6个自由度关节相连。疲劳是通过将负责每个关节的所有肌肉捆绑成一块虚拟肌肉,虚拟单元根据它们所处的状态:活动、疲劳或休息而被划分为不同的部分。任务2是在没有疲劳的情况下执行基于逆动力学的优化。骨架优化问题的设计变量是关节角度,可以从这些角度计算关节扭矩。任务3是使用配置方法优化考虑疲劳的连接空间运动预测。在任务2下获得的关节扭矩将用于计算用于启动疲劳过程的“目标载荷”矢量。优化问题是在模型动力学运动方程的约束下,寻找使归一化关节力矩平方的代价函数最小的最优关节角度、关节力矩、关节合成和虚拟肌肉活动状态。任务4是利用静态优化方法找出疲劳关节扭矩对应的小腿和腰椎模型肌力。任务1-4是动态任务中考虑肌肉疲劳的完全非线性运动优化的相互关联的元素。任务5是从20名不同年龄、身材和体重指数的受试者(10名男性和10名女性)收集与实验相关的数据。这些数据将用于验证关节空间肌肉疲劳模型和骨骼运动预测。任务6是验证包括腕、肘、肩、躯干、髋关节、膝盖和踝关节在内的重复动态任务的肌肉疲劳模型,然后验证在重复提箱过程中考虑肌肉疲劳的3D运动预测模型。对于联合相关验证,将使用每个性别的8名受试者来调整模型,其余2名受试者将用于验证。对于3D运动预测验证,三个方面(肌肉水平、关节轮廓和地面反作用力)、模型预测将与根据肌电和运动捕捉数据确定的方面进行比较。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sensitivity analysis of sex- and functional muscle group-specific parameters for a three-compartment-controller model of muscle fatigue
肌肉疲劳三室控制器模型的性别和功能性肌群特异性参数的敏感性分析
- DOI:10.1016/j.jbiomech.2022.111224
- 发表时间:2022
- 期刊:
- 影响因子:2.4
- 作者:Rakshit, Ritwik;Barman, Shuvrodeb;Xiang, Yujiang;Yang, James
- 通讯作者:Yang, James
Modeling and simulation of a powered exoskeleton system to aid human-robot collaborative lifting
动力外骨骼系统的建模和仿真,以帮助人机协作举升
- DOI:10.17077/dhm.31768
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Arefeen, Asif;Xiang, Yujiang
- 通讯作者:Xiang, Yujiang
Assessments and Evaluation Methods for Upper Limb Exoskeleton - a Literature Survey
上肢外骨骼的评估和评价方法——文献调查
- DOI:10.1115/detc2022-88968
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Lee, Seunghun;Xiang, Yujiang;Xia, Ting;Yang, James
- 通讯作者:Yang, James
Optimization-based biomechanical lifting models for manual material handling: A comprehensive review
基于优化的手动物料搬运生物力学提升模型:全面综述
- DOI:10.1177/09544119221114208
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Zaman, Rahid;Arefeen, Asif;Quarnstrom, Joel;Barman, Shuvrodeb;Yang, James;Xiang, Yujiang
- 通讯作者:Xiang, Yujiang
Functional muscle group- and sex-specific parameters for a three-compartment controller muscle fatigue model applied to isometric contractions
应用于等长收缩的三室控制器肌肉疲劳模型的功能性肌群和性别特定参数
- DOI:10.1016/j.jbiomech.2021.110695
- 发表时间:2021
- 期刊:
- 影响因子:2.4
- 作者:Rakshit, Ritwik;Xiang, Yujiang;Yang, James
- 通讯作者:Yang, James
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yujiang Xiang其他文献
Lifting Motion Prediction Models: A Case Study
提升运动预测模型:案例研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Rahid Zaman;Yujiang Xiang;Jazmin Cruz;James Yang - 通讯作者:
James Yang
Sensitivity analysis and sensor placement for damage identification of steel truss bridge
钢桁架桥损伤识别的灵敏度分析与传感器布置
- DOI:
10.1016/j.istruc.2025.108310 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:4.300
- 作者:
Yuxue Mao;Feng Xiao;Geng Tian;Yujiang Xiang - 通讯作者:
Yujiang Xiang
Yujiang Xiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yujiang Xiang', 18)}}的其他基金
Collaborative Research: Musculoskeletal Model for Dynamic Manual Material Handling to Prevent Injury
合作研究:用于动态手动物料搬运以防止受伤的肌肉骨骼模型
- 批准号:
1849279 - 财政年份:2018
- 资助金额:
$ 29.21万 - 项目类别:
Standard Grant
Collaborative Research: Musculoskeletal Model for Dynamic Manual Material Handling to Prevent Injury
合作研究:用于动态手动物料搬运以防止受伤的肌肉骨骼模型
- 批准号:
1700865 - 财政年份:2017
- 资助金额:
$ 29.21万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319619 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230086 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Cross-Disciplinary Training for Joint Cyber-Physical Systems and IoT Security
协作研究:网络培训:实施:中:联合网络物理系统和物联网安全的跨学科培训
- 批准号:
2230087 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Continuing Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
- 批准号:
2230321 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319617 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Standard Grant
Collaborative Research: Travel: Geosciences United - A joint Technical Conference of the National Association of Black Geoscientists and the American Geophysical Union
合作研究:旅行:地球科学联合 - 全国黑人地球科学家协会和美国地球物理联盟的联合技术会议
- 批准号:
2334206 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Standard Grant
Collaborative Research: Travel: Geosciences United - A joint Technical Conference of the National Association of Black Geoscientists and the American Geophysical Union
合作研究:旅行:地球科学联合 - 全国黑人地球科学家协会和美国地球物理联盟的联合技术会议
- 批准号:
2334207 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Standard Grant
Collaborative Research: NCS-FR: DEJA-VU: Design of Joint 3D Solid-State Learning Machines for Various Cognitive Use-Cases
合作研究:NCS-FR:DEJA-VU:针对各种认知用例的联合 3D 固态学习机设计
- 批准号:
2319618 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Continuing Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
- 批准号:
2230320 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Standard Grant
Collaborative Research: RI:Medium:Understanding Events from Streaming Video - Joint Deep and Graph Representations, Commonsense Priors, and Predictive Learning
协作研究:RI:Medium:理解流视频中的事件 - 联合深度和图形表示、常识先验和预测学习
- 批准号:
2348689 - 财政年份:2023
- 资助金额:
$ 29.21万 - 项目类别:
Continuing Grant