On the Discrete Spectrum of Classical Groups and Converse Theorems
论经典群的离散谱及逆定理
基本信息
- 批准号:1702218
- 负责人:
- 金额:$ 16.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns certain problems within the Langlands Program, a program proposed by Robert Langlands in 1960s. The Langlands Program is a web of far-reaching and influential conjectures that predicts surprising connections between arithmetic (e.g., properties of solutions to polynomial equations) and analysis (e.g., highly symmetric solutions to certain differential equations on symmetric manifolds, known as automorphic forms). The celebrated proof of Fermat's Last Theorem by A. Wiles, for instance, uses early results in the Langlands program proved by Langlands and Tunnell. In another direction, automorphic forms have deep connections with the string theory and the study of black holes in physics. In this project the PI will investigate analytic properties of automorphic forms and their number-theoretic consequences in the Langlands program. A main theme in the theory of automorphic forms is to study the discrete spectrum of connected reductive groups defined over number fields. By the pioneered work of Arthur, followed by many others, the discrete spectrum of classical groups has been classified into Arthur packets parametrized by Arthur parameters. The first part of this project is to analyze the finer structure of Arthur packets, including: concrete constructions of modules in each Arthur packet; Fourier coefficients of automorphic representations in each Arthur packet, including Jiang's conjecture; cuspidality of each Arthur packet; and relations among Arthur packets of different but closely related groups (via automorphic descent). The second part of the project is about converse problems. Converse problems aim to recover modular/automorphic forms from their Fourier coefficients. For example, the famous converse theorems of Hecke and Weil give sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. It is known that converse theorems play an important role in the establishment of Langlands functoriality. In this part of the project the PI will develop approaches to several conjectures, including Jacquet's conjecture and Cogdell-Piatetski-Shapiro conjecture, in order to prove optimal local and global converse theorems.
这项研究项目涉及朗兰兹计划中的某些问题,朗兰兹计划是罗伯特·朗兰兹在20世纪60年代提出的计划。朗兰兹计划是一个影响深远的猜想网络,它预测了算术(例如,多项式方程的解的性质)和分析(例如,对称流形上的某些微分方程解的高度对称解,称为自同构形式)之间惊人的联系。例如,A.Wiles的著名的费马大定理的证明,使用了朗兰兹和图内尔证明的朗兰兹计划中的早期结果。另一方面,自同构形式与弦理论和物理学中对黑洞的研究有很深的联系。在这个项目中,PI将在朗兰兹计划中研究自同构形式的解析性质及其数论结果。自同构形式理论的一个主要主题是研究定义在数域上的连通约化群的离散谱。通过Arthur的开创性工作以及其他许多人的工作,经典群的离散谱被分类为由Arthur参数参数化的Arthur包。本课题的第一部分是对Arthur包的精细结构进行分析,包括:每个Arthur包中模的具体构造;每个Arthur包中自同构表示的傅立叶系数,包括江氏猜想;每个Arthur包的尖端性;以及不同但密切相关的群之间的关系(通过自同构下降)。该项目的第二部分是关于逆问题的。逆问题的目标是从傅立叶系数恢复模/自同构形式。例如,著名的Hecke和Weil逆定理给出了Dirichlet级数是模形式的Mellin变换的充分条件。众所周知,逆定理在建立朗兰兹函数中起着重要的作用。在项目的这一部分,PI将开发几个猜想的方法,包括Jacquet猜想和Cogdell-Piatetski-Shapiro猜想,以证明最优的局部和整体逆定理。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A reciprocal branching problem for automorphic representations and global Vogan packets
- DOI:10.1515/crelle-2019-0016
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Dihua Jiang;Baiying Liu;Bin Xu
- 通讯作者:Dihua Jiang;Baiying Liu;Bin Xu
On the local converse theorem for p-adic GLn
关于 p 进 GLn 的局部逆定理
- DOI:10.1353/ajm.2018.0035
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Jacquet, Hervé;Liu, Baiying
- 通讯作者:Liu, Baiying
Degenerate principal series for classical and odd GSpin groups in the general case
一般情况下经典和奇 GSpin 群的简并主级数
- DOI:10.1090/ert/548
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kim, Yeansu;Liu, Baiying;Matić, Ivan
- 通讯作者:Matić, Ivan
A remark on a converse theorem of Cogdell and Piatetski-Shapiro
对Cogdell和Piatetski-Shapiro逆定理的评述
- DOI:10.1515/crelle-2018-0015
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Jacquet, Hervé;Liu, Baiying
- 通讯作者:Liu, Baiying
Fourier coefficients attached to small automorphic representations of SLn(A)
- DOI:10.1016/j.jnt.2018.03.022
- 发表时间:2018-11
- 期刊:
- 影响因子:0.7
- 作者:O. Ahlén;H. Gustafsson;A. Kleinschmidt;Baiying Liu;D. Persson
- 通讯作者:O. Ahlén;H. Gustafsson;A. Kleinschmidt;Baiying Liu;D. Persson
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baiying Liu其他文献
On the intersection of local Arthur packets for classical groups and applications
关于经典组和应用程序的本地 Arthur 数据包的交集
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alexander Hazeltine;Baiying Liu;Chi - 通讯作者:
Chi
Model transition under local theta correspondence
局部theta对应下的模型转换
- DOI:
10.1016/j.jalgebra.2015.09.041 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Baiying Liu - 通讯作者:
Baiying Liu
Quasi-admissible, raisable nilpotent orbits, and theta representations
准容许、可提升的幂零轨道和 theta 表示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fan Gao;Baiying Liu;Wan - 通讯作者:
Wan
Raising nilpotent orbits in wave-front sets
在波前集中提升幂零轨道
- DOI:
10.1090/ert/490 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dihua Jiang;Baiying Liu;Gordan Savin - 通讯作者:
Gordan Savin
Some results on simple supercuspidal representations of GL n ( F )
GL n ( F ) 的简单上尖角表示的一些结果
- DOI:
10.1016/j.jnt.2015.08.002 - 发表时间:
2016 - 期刊:
- 影响因子:0.7
- 作者:
Moshe Adrian;Baiying Liu - 通讯作者:
Baiying Liu
Baiying Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baiying Liu', 18)}}的其他基金
CAREER: Automorphic Forms and the Langlands Program
职业:自守形式和朗兰兹纲领
- 批准号:
1848058 - 财政年份:2019
- 资助金额:
$ 16.26万 - 项目类别:
Continuing Grant
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1620329 - 财政年份:2015
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1302122 - 财政年份:2013
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
相似国自然基金
三角范畴spectrum及周群的研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
- 批准号:
2328281 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Replacing valproate with a safer, broad-spectrum drug for epilepsy treatment
用更安全的广谱药物替代丙戊酸治疗癫痫
- 批准号:
MR/Y019334/1 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Research Grant
Elucidating the role of Cnot3 in regulating social behavior in Autism Spectrum Disorder
阐明 Cnot3 在调节自闭症谱系障碍社会行为中的作用
- 批准号:
24K18632 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332722 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Travel: NSF Student Travel Grant for 2024 IEEE International Symposium on Dynamic Spectrum Access Networks (IEEE DySPAN)
旅行:2024 年 IEEE 动态频谱接入网络国际研讨会 (IEEE DySPAN) 的 NSF 学生旅行补助金
- 批准号:
2420834 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: DASS: Dynamically Adjustable Spectrum Sharing between Ground Communication Networks and Earth Exploration Satellite Systems Above 100 GHz
合作研究:SWIFT-SAT:DASS:地面通信网络与 100 GHz 以上地球探测卫星系统之间的动态可调频谱共享
- 批准号:
2332721 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Collaborative Research: SII-NRDZ: SweepSpace: Enabling Autonomous Fine-Grained Spatial Spectrum Sensing and Sharing
合作研究:SII-NRDZ:SweepSpace:实现自主细粒度空间频谱感知和共享
- 批准号:
2348589 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Standard Grant
Diagnostic and Therapeutic Potential of Circular RNAs in Autism Spectrum Disorder
环状 RNA 在自闭症谱系障碍中的诊断和治疗潜力
- 批准号:
24K10503 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Networks: New links between spectrum, dynamics, rewirings and applications
网络:频谱、动态、重新布线和应用之间的新联系
- 批准号:
DP240102585 - 财政年份:2024
- 资助金额:
$ 16.26万 - 项目类别:
Discovery Projects
Inverted confocal-laser-scanning-microscope with an extended excitation-emission spectrum
具有扩展激发发射光谱的倒置共焦激光扫描显微镜
- 批准号:
525029482 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Major Research Instrumentation