CAREER: Automorphic Forms and the Langlands Program
职业:自守形式和朗兰兹纲领
基本信息
- 批准号:1848058
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project concerns certain problems within the Langlands Program, a program proposed by Robert Langlands in 1960s. The Langlands program is a web of far-reaching and influential conjectures that predicts surprising connections between arithmetic (e.g., properties of integer solutions to polynomial equations) and analysis (e.g., automorphic forms, which are highly symmetric solutions to certain differential equations on symmetric manifolds). The celebrated proof of Fermat's Last Theorem by A. Wiles, for instance, uses early results in the Langlands program proved by Langlands and Tunnell. In another direction, automorphic forms have deep connections with the string theory and the study of black holes in physics. In this project the PI will investigate analytic properties of automorphic forms and their number-theoretic consequences in the Langlands program. The project also integrates educational opportunities, including public outreach lectures, undergraduate and graduate research activities, cross-disciplinary training and research, and graduate curriculum development. A main theme in the theory of automorphic forms is to study the discrete spectrum of a connected reductive algebraic group defined over a number field. By the pioneering work of Arthur, followed by many others, the discrete spectrum of a classical group has been classified into so-called Arthur packets, which are parametrized by Arthur parameters. The first part of this project is to analyze the finer structure of Arthur packets, including: concrete constructions of modules in each Arthur packet; Fourier coefficients of automorphic representations in each Arthur packet, including Jiang's conjecture; cuspidality of each Arthur packet; and relations among Arthur packets of different but closely related groups (via automorphic descent). The PI will also work on establishing Langlands functorial descent for exceptional groups, towards studying the Langlands functoriality and the discrete spectra of exceptional groups. The second part of the project is about converse problems. Converse problems aim to recover modular/automorphic forms from their Fourier coefficients. For example, the famous converse theorems of Hecke and Weil give sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form. It is known that converse theorems play an important role in the establishment of Langlands functoriality. In this part of the project the PI will develop approaches to several conjectures, including Jacquet's conjecture and Cogdell-Piatetski-Shapiro conjecture, in order to prove optimal local and global converse theorems, as well as converse problems for exceptional groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目涉及朗兰兹纲领中的某些问题,朗兰兹纲领是由罗伯特·朗兰兹于20世纪60年代提出的。朗兰兹纲领是一个具有深远影响力的理论网络,它预测了算术之间令人惊讶的联系(例如,多项式方程的整数解的性质)和分析(例如,自守形式,是对称流形上某些微分方程的高度对称解)。费马大定理的著名证明。例如,怀尔斯使用了朗兰兹和通内尔证明的朗兰兹纲领的早期结果。在另一个方向上,自守形式与物理学中的弦理论和黑洞研究有着深刻的联系。在这个项目中,PI将研究自守形式的分析性质及其在朗兰兹程序中的数论后果。该项目还整合了教育机会,包括公共宣传讲座、本科生和研究生研究活动、跨学科培训和研究以及研究生课程开发。自守型理论的一个主要问题是研究数域上连通约化代数群的离散谱。由亚瑟的开创性工作,随后许多其他人,一个经典群的离散谱已被归类为所谓的亚瑟包,这是参数化的亚瑟参数。这个项目的第一部分是分析亚瑟包的更精细的结构,包括:每个亚瑟包中模块的具体构造;每个亚瑟包中自守表示的傅立叶系数,包括江猜想;每个亚瑟包的尖点性;以及不同但密切相关的群的亚瑟包之间的关系(通过自守下降)。PI还将致力于建立特殊群的朗兰兹函子下降,以研究朗兰兹函子性和特殊群的离散谱。第二部分是关于匡威问题的研究。匡威问题的目标是从它们的傅立叶系数恢复模/自守形式。例如,著名的Hecke和Weil的匡威定理给出了Dirichlet级数是模形式的Mellin变换的充分条件。匡威定理在朗兰兹泛函的建立中起着重要的作用。在项目的这一部分,PI将开发几个猜想的方法,包括Jacquet猜想和Cogdell-Piatetski-Shapiro猜想,以证明最优的局部和全局匡威定理,以及特殊群体的匡威问题。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Degenerate principal series for classical and odd GSpin groups in the general case
一般情况下经典和奇 GSpin 群的简并主级数
- DOI:10.1090/ert/548
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kim, Yeansu;Liu, Baiying;Matić, Ivan
- 通讯作者:Matić, Ivan
A reciprocal branching problem for automorphic representations and global Vogan packets
- DOI:10.1515/crelle-2019-0016
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Dihua Jiang;Baiying Liu;Bin Xu
- 通讯作者:Dihua Jiang;Baiying Liu;Bin Xu
A Converse Theorem for Split SO2l over Finite Fields
- DOI:10.1007/s10114-023-2061-6
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Alexander Hazeltine;Baiying Liu
- 通讯作者:Alexander Hazeltine;Baiying Liu
On a converse theorem for $${\mathrm {G}}_2$$ over finite fields
- DOI:10.1007/s00208-021-02250-2
- 发表时间:2021-08
- 期刊:
- 影响因子:1.4
- 作者:Baiying Liu;Qing Zhang
- 通讯作者:Baiying Liu;Qing Zhang
Local descent to quasi-split even general spin groups
局部下降到准分裂甚至一般旋转群
- DOI:10.1007/s00209-023-03227-4
- 发表时间:2023
- 期刊:
- 影响因子:0.8
- 作者:Kaplan, Eyal;Lau, Jing Feng;Liu, Baiying
- 通讯作者:Liu, Baiying
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baiying Liu其他文献
On the intersection of local Arthur packets for classical groups and applications
关于经典组和应用程序的本地 Arthur 数据包的交集
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Alexander Hazeltine;Baiying Liu;Chi - 通讯作者:
Chi
Model transition under local theta correspondence
局部theta对应下的模型转换
- DOI:
10.1016/j.jalgebra.2015.09.041 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Baiying Liu - 通讯作者:
Baiying Liu
Quasi-admissible, raisable nilpotent orbits, and theta representations
准容许、可提升的幂零轨道和 theta 表示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fan Gao;Baiying Liu;Wan - 通讯作者:
Wan
Raising nilpotent orbits in wave-front sets
在波前集中提升幂零轨道
- DOI:
10.1090/ert/490 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Dihua Jiang;Baiying Liu;Gordan Savin - 通讯作者:
Gordan Savin
Some results on simple supercuspidal representations of GL n ( F )
GL n ( F ) 的简单上尖角表示的一些结果
- DOI:
10.1016/j.jnt.2015.08.002 - 发表时间:
2016 - 期刊:
- 影响因子:0.7
- 作者:
Moshe Adrian;Baiying Liu - 通讯作者:
Baiying Liu
Baiying Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baiying Liu', 18)}}的其他基金
On the Discrete Spectrum of Classical Groups and Converse Theorems
论经典群的离散谱及逆定理
- 批准号:
1702218 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1620329 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Unitary representations of affine Hecke algebras and reductive p-adic groups
仿射 Hecke 代数和还原 p-adic 群的酉表示
- 批准号:
1302122 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference: International Conference on L-functions and Automorphic Forms
会议:L-函数和自同构国际会议
- 批准号:
2349888 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347095 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347097 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Automorphic Forms and the Langlands Program
自守形式和朗兰兹纲领
- 批准号:
2401353 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Topics in automorphic Forms and Algebraic Cycles
自守形式和代数循环主题
- 批准号:
2401548 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Conference: Workshop on Automorphic Forms and Related Topics
会议:自守形式及相关主题研讨会
- 批准号:
2401444 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Langlands correspondences and the arithmetic of automorphic forms
朗兰兹对应和自守形式的算术
- 批准号:
2302208 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Chiral de Rham complex and automorphic forms
手性德拉姆复合体和自守形式
- 批准号:
23K19008 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
L-Functions and Automorphic Forms: Algebraic and p-adic Aspects
L 函数和自守形式:代数和 p 进方面
- 批准号:
2302011 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant