Spectroscopy with Quantum Sensors at the Nanoscale
纳米级量子传感器的光谱学
基本信息
- 批准号:1702716
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Description: Spectroscopy is a powerful tool in many physical settings, with applications ranging from analysis of basic physical properties to sample analysis in chemistry, material science and bio-imaging. This project aims at translating the powerful techniques used in spectroscopy to a novel type of sensors, based on the quantum properties of defects in diamond. These optically active defects (color centers) have an associated electronic spin that is sensitive to magnetic and electric fields, temperature, pressure, etc. The project will develop spectroscopic techniques, tailored to the quantum realm, that can be implemented with these nanoscale sensors in diamond. In particular, the project will focus on achieving noise spectroscopy, that is, measuring spatial and temporal correlation of random fields (in particular magnetic fields), which are ubiquitous in materials and biological sciences. By combining novel noise spectroscopic techniques that work for quantum sensors, with the nanoscale resolution of the quantum sensors themselves, the novel quantum noise spectroscopy technique will be able to measure fields at scales not previously accessible. In addition, the project will provide opportunities for training graduate and undergraduate students in broad areas, ranging from magnetic resonance, to quantum information, as well as experimental skills in electronics and quantum optics. The project will in addition develop outreach activities, including a diamond sensor demo. Technical Description: The advent of novel nanoscale sensors exploiting individual quantum systems promise to shed light into our fundamental understanding of nano-electronics, photonics and magnetics devices, and their underlying physical phenomena. These novel quantum probes, such as the Nitrogen-Vacancy center in diamond, can perform in conditions and with a spatial resolution previously inaccessible: they can be brought very close to the system of interest and measure minute magnetic (or electric) fields with nanoscale resolution. After the first proof-of-principle demonstrations in recent years, these sensors are on the verge of becoming transformative tools for the exploration of electromagnetic devices and materials. To reach this goal, these spin sensors should be able not only to measure the magnitude of a given field, but more importantly its temporal and spatial correlations that carry most of the information about underlying physical properties. The goal of this project is to transform quantum sensors associated with spins in diamond into powerful spectrometers, able to detect spatiotemporal correlations of magnetic fields at the nanoscale due to, e.g., biological or magnetic materials dynamics, with a spatial resolution and sensitivity previously unattainable. Moreover, characterizing the noise spectrum is critical for devising effective strategies to counteract decoherence in emerging quantum devices. This project will combine expertise on noise spectroscopy and on quantum digital filtering to achieve an efficient and complete reconstruction of the noise spectrum via a quantum nanoscale sensor. The ultimate goal is to develop a new field of quantum digital noise spectroscopy, based on noise spectroscopy combined with the complete basis of Walsh digital filtering functions, and applying it to enhanced sensing of magnetic samples, and their structure and spatiotemporal correlations. Quantum digital noise spectroscopy with NV centers in diamond, also combined with super-resolution addressing of NVs, will be applied to nanoscale magnetic resonance imaging of biological samples and to measure spatial noise correlations of magnetic 2D materials. Such experiments could shed new light on the structure and dynamics of the measured samples, leading to new insights in biological functions and in universal properties of magnetic phase transitions.
非技术描述:光谱学是许多物理环境中的强大工具,其应用范围从基本物理性质的分析到化学、材料科学和生物成像中的样品分析。该项目旨在将光谱学中使用的强大技术转化为基于金刚石缺陷量子特性的新型传感器。这些光学活性缺陷(色心)具有相关的电子自旋,对磁场和电场,温度,压力等敏感,该项目将开发光谱技术,为量子领域量身定制,可以在金刚石中使用这些纳米级传感器。特别是,该项目将侧重于实现噪声光谱学,即测量随机场(特别是磁场)的空间和时间相关性,这在材料和生物科学中无处不在。通过将适用于量子传感器的新型噪声光谱技术与量子传感器本身的纳米级分辨率相结合,新型量子噪声光谱技术将能够以以前无法达到的尺度测量场。此外,该项目将为研究生和本科生提供广泛领域的培训机会,从磁共振到量子信息,以及电子和量子光学的实验技能。此外,该项目还将开展外联活动,包括钻石传感器演示。技术说明:利用单个量子系统的新型纳米级传感器的出现有望揭示我们对纳米电子学,光子学和磁性器件及其潜在物理现象的基本理解。这些新的量子探针,如金刚石中的氮空位中心,可以在以前无法达到的条件和空间分辨率下工作:它们可以非常接近感兴趣的系统,并以纳米级分辨率测量微小的磁场(或电场)。经过近年来的首次原理验证,这些传感器即将成为探索电磁设备和材料的变革性工具。 为了实现这一目标,这些自旋传感器不仅应该能够测量给定场的大小,更重要的是它的时间和空间相关性,这些相关性携带了有关基本物理特性的大部分信息。该项目的目标是将与金刚石自旋相关的量子传感器转换为强大的光谱仪,能够检测纳米级磁场的时空相关性,例如,生物或磁性材料动力学,具有以前无法达到的空间分辨率和灵敏度。此外,表征噪声谱对于设计有效的策略来抵消新兴量子器件中的退相干是至关重要的。该项目将结合联合收割机在噪声光谱学和量子数字滤波方面的专业知识,通过量子纳米级传感器实现噪声光谱的有效和完整重建。最终目标是开发一个新的量子数字噪声光谱学领域,基于噪声光谱学结合沃尔什数字滤波函数的完整基础,并将其应用于磁性样品及其结构和时空相关性的增强传感。具有金刚石中NV中心的量子数字噪声光谱,还结合NV的超分辨率寻址,将应用于生物样品的纳米级磁共振成像和测量磁性2D材料的空间噪声相关性。这样的实验可以揭示被测样品的结构和动力学,从而对生物功能和磁相变的普遍性质产生新的见解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification and Control of Electron-Nuclear Spin Defects in Diamond
- DOI:10.1103/physrevlett.124.083602
- 发表时间:2020-02-25
- 期刊:
- 影响因子:8.6
- 作者:Cooper, Alexandre;Sun, Won Kyu Calvin;Cappellaro, Paola
- 通讯作者:Cappellaro, Paola
Improved entanglement detection with subspace witnesses
- DOI:10.1103/physreva.101.012319
- 发表时间:2019-11
- 期刊:
- 影响因子:2.9
- 作者:Won Kyu Calvin Sun;Alexandre Cooper;P. Cappellaro
- 通讯作者:Won Kyu Calvin Sun;Alexandre Cooper;P. Cappellaro
Spatial noise filtering through error correction for quantum sensing
- DOI:10.1038/s41534-018-0082-2
- 发表时间:2017-08
- 期刊:
- 影响因子:7.6
- 作者:David Layden;P. Cappellaro
- 通讯作者:David Layden;P. Cappellaro
Environment-assisted Quantum-enhanced Sensing with Electronic Spins in Diamond
- DOI:10.1103/physrevapplied.12.044047
- 发表时间:2019-10-21
- 期刊:
- 影响因子:4.6
- 作者:Cooper, Alexandre;Sun, Won Kyu Calvin;Cappellaro, Paola
- 通讯作者:Cappellaro, Paola
Nanoscale Vector dc Magnetometry via Ancilla-Assisted Frequency Up-Conversion
- DOI:10.1103/physrevlett.122.100501
- 发表时间:2019-03-13
- 期刊:
- 影响因子:8.6
- 作者:Liu, Yi-Xiang;Ajoy, Ashok;Cappellaro, Paola
- 通讯作者:Cappellaro, Paola
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paola Cappellaro其他文献
Blind quantum machine learning with quantum bipartite correlator
使用量子二分相关器的盲量子机器学习
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Changhao Li;Boning Li;Omar Amer;Ruslan Shaydulin;Shouvanik Chakrabarti;Guoqing Wang;Haowei Xu;Hao Tang;Isidor Schoch;Niraj Kumar;Charles Lim;Ju Li;Paola Cappellaro;Marco Pistoia - 通讯作者:
Marco Pistoia
Frame change technique for phase transient cancellation.
用于相位瞬变消除的帧变化技术。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Andrew Stasiuk;Pai Peng;Garrett Heller;Paola Cappellaro - 通讯作者:
Paola Cappellaro
A Symposium on Science @ ITAMP
科学研讨会@ITAMP
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
R. Bekenstein;A. Bohrdt;Ceren Dag;Johannes Feist;Michael Knap;Chris Laumann;Misha Lemeshko;M. Lukin;S. Mistakidis;Hannes Pichler;Igor Pikovski;Ana;V. Rokaj;Richard Schmidt;Swati Singh;Timur Tscherbul Amichay;Vardi Valentin;Walther Nicole;Yunger;Zhu Notes;Jim Babb;Jim Boyle;Paola Cappellaro;Guoxin Chen;Umass Boston;Charlene Lemnios;KU Leuven;Francisco Machado;M. Marinescu;B. Naduvalath;Thomas Pohl;Peter Rabl;TU Munich;M. Shurgalin;Yan Sun;P. Stancil;Jacob Taylor;Daniel Vrinceanu;V. Walther;S. Yelin;Nicole Yunger - 通讯作者:
Nicole Yunger
$\mu$eV-deep neutron bound states in nanocrystals
纳米晶体中的$mu$eV深中子束缚态
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Hao Tang;Guoqing Wang;Paola Cappellaro;Ju Li - 通讯作者:
Ju Li
μeV-Deep Neutron Bound States in Nanocrystals.
纳米晶体中的μeV-深中子束缚态。
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:17.1
- 作者:
Hao Tang;Guoqing Wang;Paola Cappellaro;Ju Li - 通讯作者:
Ju Li
Paola Cappellaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paola Cappellaro', 18)}}的其他基金
Quantum Simulation of Out-of-Equilibrium Spin Models
非平衡自旋模型的量子模拟
- 批准号:
1915218 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Spin Polarization and Transport at the Nanoscale
纳米尺度的自旋极化和传输
- 批准号:
1415345 - 财政年份:2014
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Spin Bath of a Central Spin System in Diamond: Polarization and Coherent Control
金刚石中央自旋系统的旋转浴:偏振和相干控制
- 批准号:
1005926 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Next generation diamond quantum sensors for future industries
面向未来行业的下一代金刚石量子传感器
- 批准号:
IM240100073 - 财政年份:2024
- 资助金额:
$ 36万 - 项目类别:
Mid-Career Industry Fellowships
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Advanced Quantum Sensors for Next-Generation Sensing Applications
适用于下一代传感应用的先进量子传感器
- 批准号:
FT210100809 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
ARC Future Fellowships
Integrating quantum sensors with bespoke quantum error correction
将量子传感器与定制量子纠错集成
- 批准号:
EP/W028115/1 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Fellowship
Printed Infrared Quantum Dot Photodetectors and Large-scale Image Sensors
印刷红外量子点光电探测器和大型图像传感器
- 批准号:
DE230101711 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Discovery Early Career Researcher Award
Atomic resolution imaging using quantum sensors enabled by smart adaptive control
使用智能自适应控制启用的量子传感器进行原子分辨率成像
- 批准号:
2890685 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Studentship
IAQD - Unlocking the potential of Short Wave Infrared (SWIR) sensors with novel InAs Quantum Dots technology
IAQD - 利用新型 InAs 量子点技术释放短波红外 (SWIR) 传感器的潜力
- 批准号:
10042304 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
MWQD - Realising the true potential of Mid-Wave Infrared Sensors by improving affordability and adoption via Quantum Dot technology
MWQD - 通过量子点技术提高可承受性和采用率,实现中波红外传感器的真正潜力
- 批准号:
10066153 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D
3LX - Developing low-cost, low-energy, low-detection limit X-Ray image sensors for critical industries using quantum dot technology
3LX - 使用量子点技术为关键行业开发低成本、低能耗、低检测限的 X 射线图像传感器
- 批准号:
10077184 - 财政年份:2023
- 资助金额:
$ 36万 - 项目类别:
Collaborative R&D














{{item.name}}会员




