QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
基本信息
- 批准号:2326801
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project combines two exotic materials, superfluid helium and nanoporous two-dimensional polymers, to develop a sensor device that takes advantage of the strange macroscopic quantum behavior of liquid helium at temperatures near absolute zero. A nanoporous membrane will provide a weak link between two reservoirs of superfluid helium, and enable a quantum coupling known as a Josephson junction. The resulting transport of superfluid between reservoirs is predicted to have unusual properties described by quantum mechanics. Quantum sensors based on this architecture will allow measurement of phenomena that is undetectable to conventional sensors, from minute fluctuations in the Earth’s rotation to the fingerprints of dark matter. The technical applications for of this quantum sensor are widespread. They are found in disciplines spanning geodesy (GPS and geological exploration), gravitation and general relativity (dark matter and cosmology), metrology (quantum standards for physical quantities), and quantum information (quantum computing). Exploring Josephson junctions for superfluid helium can enable new capabilities that are useful in several scientific disciplines. The key hypothesis is that nanoporous two-dimensional crystal polymer membranes will enable superfluid helium-4 Josephson junction structures. This project is designed to demonstrate superfluid Josephson junctions and explore how to control and measure the quantum transport of superfluid through the restricted geometry of a nanoporous membrane. The fundamental noise properties of the junctions will be studied in order to understand the ultimate performance of matter wave interference devices, gyroscopes, quantum limited amplifiers, quantum standards, and qubit structures based on this effect. As part of these experiments, this project will examine fundamental issues in condensed matter physics, quantum materials, materials science, and quantum engineering. This project will lay a foundation for new quantum devices such as superfluid SQUIDs, acoustic amplifiers, quantum standards, and qubits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目结合了两种奇异的材料--超流氦和纳米多孔二维聚合物,以开发一种传感器设备,该设备利用液氦在绝对零度附近奇怪的宏观量子行为。纳米多孔膜将在两个超流氦储存库之间提供弱连接,并实现被称为约瑟夫森结的量子耦合。由此产生的超流体在储集层之间的传输被预测具有量子力学描述的不寻常的性质。基于这种结构的量子传感器将允许测量常规传感器无法检测到的现象,从地球自转的微小波动到暗物质的指纹。这种量子传感器的技术应用非常广泛。它们存在于测地学(GPS和地质勘探)、引力和广义相对论(暗物质和宇宙学)、计量学(物理量的量子标准)和量子信息(量子计算)等学科中。探索超流氦的约瑟夫森结可以实现在几个科学学科中有用的新能力。关键假设是纳米多孔二维晶体聚合物膜将使超流氦-4约瑟夫森结结构成为可能。该项目旨在演示超流体约瑟夫森结,并探索如何控制和测量超流体通过纳米孔膜的限制几何形状的量子传输。为了了解基于这种效应的物质波干涉器件、陀螺仪、量子限幅放大器、量子标准和量子比特结构的最终性能,我们将研究这些结的基本噪声特性。作为这些实验的一部分,这个项目将研究凝聚态物理、量子材料、材料科学和量子工程中的基本问题。该项目将为超流体SQUID、声学放大器、量子标准和量子比特等新的量子设备奠定基础。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin King其他文献
Aortobifemoral reconstruction in open abdominal aortic aneurysm repair is associated with increased morbidity and mortality
开放腹主动脉瘤修复中的主动脉双股重建与发病率和死亡率增加有关
- DOI:
10.1016/j.jvs.2023.03.019 - 发表时间:
2023-07-01 - 期刊:
- 影响因子:3.600
- 作者:
Benjamin King;Caron Rockman;Sukgu Han;Jeffrey J. Siracuse;Virendra I. Patel;William S. Johnson;Heepeel Chang;Neal Cayne;Thomas Maldonado;Glenn Jacobowitz;Karan Garg - 通讯作者:
Karan Garg
Mapping Farm-to-School Networks Implications for Research and Practice
绘制农场到学校网络对研究和实践的影响
- DOI:
10.1080/19320248.2011.576206 - 发表时间:
2011 - 期刊:
- 影响因子:1.6
- 作者:
D. Conner;Benjamin King;C. Koliba;J. Kolodinsky;A. Trubek - 通讯作者:
A. Trubek
Musician occupational and financial stress and mental health burden
音乐家的职业和经济压力以及心理健康负担
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.7
- 作者:
Lloyd Berg;Benjamin King;J. Koenig;R. Mcroberts - 通讯作者:
R. Mcroberts
PD32-09 MULTICENTER VALIDATION OF S.T.O.N.E. NEPHROLITHOMETRY
- DOI:
10.1016/j.juro.2014.02.2280 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:
- 作者:
Zhamshid Okhunov;Daniel Moreira;Arvin George;Arash Akhavein;Sammy Elsamra;Brian Duty;Hector Motato;Michael Del Junco;Fotima Askarova;Michael Rothberg;Mantu Gupta;Chad Tracy;Kevan Sternberg;Brian Irwin;Benjamin King;Edan Shapiro;Jorge Moreno;Arun Srinivasan;Sero Andonian;Vincent Bird - 通讯作者:
Vincent Bird
Poly(2‐vinylpyridine) as an Additive for Enhancing N‐Type Organic Thin‐Film Transistor Stability
聚(2-乙烯基吡啶)作为增强 N 型有机薄膜晶体管稳定性的添加剂
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.2
- 作者:
Samantha Brixi;Chloé Dindault;Benjamin King;H. Lamontagne;A. Shuhendler;S. Swaraj;Benoît H. Lessard - 通讯作者:
Benoît H. Lessard
Benjamin King的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin King', 18)}}的其他基金
MRI: Acquisition of a Powder X-Ray Diffractometer
MRI:购买粉末 X 射线衍射仪
- 批准号:
1429768 - 财政年份:2014
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
New Circulenes as Probes of Aromaticity and Models for Graphene Defects
新圆烯作为芳香性探针和石墨烯缺陷模型
- 批准号:
0957702 - 财政年份:2010
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
CAREER: Helical and Linear Graphitic Strips - Synthesis and Properties
职业:螺旋和线性石墨带 - 合成和性能
- 批准号:
0449740 - 财政年份:2005
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
- 批准号:
2326838 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
- 批准号:
2326784 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant