QuSeC-TAQS: Optically Hyperpolarized Quantum Sensors in Designer Molecular Assemblies
QuSeC-TAQS:设计分子组件中的光学超极化量子传感器
基本信息
- 批准号:2326838
- 负责人:
- 金额:$ 200万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will develop and demonstrate methods which implement quantum sensing in the organic linker components of metal-organic framework (MOF) molecular assemblies. This work will serve to promote the progress of science by producing models which reveal how the synthesis parameters of MOFs determine the quantum coherence and other properties underpinning their use as sensors. Through this newfound understanding, researchers will be able to engineer MOF designs with optimized quantum sensing performance and thereby establish novel MOF-based quantum sensing tools which are immediately applicable both for general-purpose chemical sensing and for fundamental research in quantum information science (QIS), with performance equal or superior to existing tools. Beyond generic uses, these MOF-based quantum sensors will have further impact as a new and powerful means to interrogate and characterize the MOFs themselves; as MOFs have broad potential for transformative applications across catalysis, carbon capture, energy storage, and ex-vivo biochemical sensing, among other fields, this novel characterization tool is poised to accelerate research which applies MOFs for the benefit of society. This project will also help to broaden participation in science education and the science workforce. This team will involve undergraduate researchers in all aspects of the project, and extend the educational impact of research activities by adapting data and designs into course materials. Further, this team will institute a mentorship project where they support community college transfer students (largely first generation) through quantum mechanics courses in UC Berkeley’s College of Chemistry, and the team will perform outreach to predominantly undergraduate institutions in the San Francisco Bay Area, drawing upon this project’s outputs in each case.This project will develop designer quantum sensor platforms based on “hyperpolarized” nuclear spins in MOFs. This novel bottom-up approach leverages the ability of MOFs to maintain atomically precise 3D arrays of quantum sensors, with fine synthetic control of sensor spacing, crystal topology, enrichment, and inter-sensor coupling. Moreover, the high internal surface area of MOFs and their resultant ability to imbibe guest molecules will yield “bulk-as-a-surface” quantum sensors with far greater sensitivity and resolution for chemo-sensing than conventional approaches. Organic linker elements in MOFs can host optically polarizable electrons which can be made to transfer spin polarization to surrounding nuclear spins either in the MOF structure itself or in guest molecules. The long ~90s spin coherence lifetimes of hyperpolarized nuclear spins recently demonstrated by PI Ajoy will enable these nuclei to serve as highly sensitive magnetometers and as quantum chemical sensors by relaying nuclear magnetic resonance (NMR) spectral data. The team will combine bottom-up synthesis of MOFs across a range of parameters, first principles computational models of electronic and vibrational phenomena developed in concert with the Materials Project, and experimental spectroscopic and other characterization data to determine the impact of synthetic parameters on the physical, chemical, and quantum coherence properties of the resulting MOF to optimize sensing platforms. Unique instrumentation recently developed in UC Berkeley will allow coherence measurements via NMR and electron paramagnetic resonance (EPR) at various temperatures and magnetic fields. This project will also investigate 2D MOFs and intercalation compounds as risk mitigation and to gain deeper insights into factors impacting coherence and sensor performance. This team's quantum sensing approach based on MOFs will introduce a paradigmatic advance over current methods (e.g. NV centers) that rely on electronic spins near surfaces for sensing: the high porosity and tunable chemical affinity of MOFs will allow the entire material bulk to usefully perform sensing, while independence from crystal orientation will allow deployment of sensors to locations of interest. The ability to array quantum sensors in 3D with atomic precision and control their topology, enrichment, and inter-sensor coupling through synthesis opens avenues for “designer” platforms for quantum sensing. The use of nuclear spin hyperpolarization in MOFs and the long coherence times attainable with nuclear spins will further aid sensitivity and sensing resolution toward the goal of transformative applications. The team anticipates these sensors will allow determination of the physisorption and cooperative binding mechanisms central to MOF host-guest chemistries, thereby yielding new optimized materials for carbon capture and energy storage. Applications of these quantum sensors in biology may include employing hyperpolarized 13CO2 molecules as in-vivo pH chemical sensors, or oxidative stress sensors ex-vivo.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将开发和演示在金属-有机框架(MOF)分子组装的有机连接元件中实现量子传感的方法。这项工作将通过建立模型来促进科学的进步,这些模型揭示了mof的合成参数如何决定其作为传感器使用的量子相干性和其他特性。通过这种新发现的理解,研究人员将能够设计具有优化量子传感性能的MOF设计,从而建立新的基于MOF的量子传感工具,这些工具立即适用于通用化学传感和量子信息科学(QIS)的基础研究,其性能等于或优于现有工具。除了通用用途之外,这些基于mof的量子传感器将作为一种新的强大手段来询问和表征mof本身,从而产生进一步的影响;由于mof在催化、碳捕获、能量储存和离体生化传感等领域具有广泛的变革性应用潜力,这种新型表征工具有望加速mof应用于社会的研究。该项目还将有助于扩大科学教育和科学劳动力的参与。这个团队将包括本科生研究人员参与项目的各个方面,并通过将数据和设计融入课程材料来扩大研究活动的教育影响。此外,该团队将建立一个导师项目,通过加州大学伯克利分校化学学院的量子力学课程支持社区学院的转学生(主要是第一代),该团队将在旧金山湾区的主要本科院校开展外展,在每个案例中借鉴该项目的成果。该项目将开发基于mof中“超极化”核自旋的设计量子传感器平台。这种新颖的自下而上的方法利用mof的能力来维持量子传感器的原子精确的3D阵列,并对传感器间距、晶体拓扑、富集和传感器间耦合进行精细的综合控制。此外,mof的高内表面积及其吸收客体分子的能力将产生比传统方法具有更高灵敏度和分辨率的“体积即表面”量子传感器。MOF中的有机连接元件可以承载光学极化电子,这些电子可以在MOF结构本身或客体分子中将自旋极化转移到周围的核自旋。PI Ajoy最近证明的超极化核自旋长~90秒的自旋相干寿命,将使这些核通过传递核磁共振(NMR)光谱数据,成为高灵敏度的磁力计和量子化学传感器。该团队将结合一系列参数的MOF的自下而上合成,与材料项目一起开发的电子和振动现象的第一性原理计算模型,以及实验光谱和其他表征数据,以确定合成参数对所得到的MOF的物理、化学和量子相干性的影响,以优化传感平台。加州大学伯克利分校最近开发的独特仪器将允许在不同温度和磁场下通过核磁共振和电子顺磁共振(EPR)进行相干测量。该项目还将研究2D mof和嵌入化合物,以降低风险,并深入了解影响相干性和传感器性能的因素。该团队基于mof的量子传感方法将比目前依赖于表面附近电子自旋进行传感的方法(例如NV中心)引入一个典型的进步:mof的高孔隙率和可调的化学亲和性将允许整个材料体有效地执行传感,而不依赖于晶体取向将允许传感器部署到感兴趣的位置。以原子精度在3D中排列量子传感器并通过合成控制其拓扑,富集和传感器间耦合的能力为量子传感的“设计师”平台开辟了道路。在mof中使用核自旋超极化和核自旋可实现的长相干时间将进一步帮助灵敏度和传感分辨率实现变革性应用的目标。该团队预计这些传感器将允许确定MOF主客体化学核心的物理吸附和合作结合机制,从而产生用于碳捕获和能量储存的新优化材料。这些量子传感器在生物学上的应用可能包括利用超极化13CO2分子作为体内pH化学传感器,或体外氧化应激传感器。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ashok Ajoy其他文献
Title Orientation-independent room temperature optical 13 C hyperpolarization in powdered
标题 粉末中与方向无关的室温光学 13 C 超极化
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ashok Ajoy;Kristina S. Liu;R. Nazaryan;X. Lv;P. Zangara;B. Safvati;Guoqing Wang;Daniel Arnold;Grace Li;Arthur Lin;Priyanka Raghavan;E. Druga;S. Dhomkar;D. Pagliero;Jeffrey A. Reimer;Dieter Suter;C. Meriles;Alexander Pines - 通讯作者:
Alexander Pines
Dynamical Hamiltonian engineering of 2D rectangular lattices in a one-dimensional ion chain
一维离子链中二维矩形晶格的动力学哈密顿量工程
- DOI:
10.1038/s41534-019-0147-x - 发表时间:
2019-04-26 - 期刊:
- 影响因子:8.300
- 作者:
Fereshteh Rajabi;Sainath Motlakunta;Chung-You Shih;Nikhil Kotibhaskar;Qudsia Quraishi;Ashok Ajoy;Rajibul Islam - 通讯作者:
Rajibul Islam
Room-temperature quantum sensing with photoexcited triplet electrons in organic crystals
有机晶体中光激发三重态电子的室温量子传感
- DOI:
10.1063/5.0186997 - 发表时间:
2024 - 期刊:
- 影响因子:4
- 作者:
Harpreet Singh;Noella D'Souza;Keyuan Zhong;E. Druga;Julianne Oshiro;Brian Blankenship;Jeffrey A. Reimer;Jonathan D. Breeze;Ashok Ajoy - 通讯作者:
Ashok Ajoy
Ashok Ajoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ashok Ajoy', 18)}}的其他基金
MRI: Track 1 Development of a Combined Optical and Magnetic Resonance Spectroscopy System
MRI:光学和磁共振组合光谱系统的轨道 1 开发
- 批准号:
2320520 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
PFI-TT: Device for High-throughput Parallel Measurement in NMR Spectroscopy
PFI-TT:核磁共振波谱高通量并行测量设备
- 批准号:
2141083 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
EAGER: ADAPT: Machine Learning for the Analysis of Novel Zero-field Nuclear Magnetic Resonance Spectroscopic Data
EAGER:ADAPT:用于分析新型零场核磁共振波谱数据的机器学习
- 批准号:
2231634 - 财政年份:2022
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
相似国自然基金
北半球历史生物地理学问题探讨:基于RAD taqs方法的紫荆属亲缘地理学研究
- 批准号:31470312
- 批准年份:2014
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
QuSeC-TAQS: Nanodiamond Quantum Sensing for Four-Dimensional Live-Cell Imaging
QuSeC-TAQS:用于四维活细胞成像的纳米金刚石量子传感
- 批准号:
2326628 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
- 批准号:
2326746 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Development of Quantum Sensors with Helium-4 using 2D Materials
QuSeC-TAQS:使用 2D 材料开发 Helium-4 量子传感器
- 批准号:
2326801 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
- 批准号:
2326840 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
- 批准号:
2326758 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Novel Quantum Algorithms for Optical Atomic Clocks
QuSeC-TAQS:用于光学原子钟的新型量子算法
- 批准号:
2326810 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Driving Advances in Magnetic Materials and Devices with Quantum Sensing of Magnons
QuSeC-TAQS:利用磁振子量子传感推动磁性材料和器件的进步
- 批准号:
2326528 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Quantum Sensing Platform for Biomolecular Analytics
QuSeC-TAQS:用于生物分子分析的量子传感平台
- 批准号:
2326748 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant
QuSeC-TAQS: Nanoscale Covariance Magnetometry with Diamond Quantum Sensors
QuSeC-TAQS:采用金刚石量子传感器的纳米级协方差磁力测量
- 批准号:
2326767 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Standard Grant
QuSeC-TAQS: Compact and Robust Quantum Atomic Sensors for Timekeeping and Inertial Sensing
QuSeC-TAQS:用于计时和惯性传感的紧凑且坚固的量子原子传感器
- 批准号:
2326784 - 财政年份:2023
- 资助金额:
$ 200万 - 项目类别:
Continuing Grant