CAREER: A General Framework for Methodical and Interpretable Anomaly Mining
职业生涯:有条不紊且可解释的异常挖掘的通用框架
基本信息
- 批准号:1703276
- 负责人:
- 金额:$ 50.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-10-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Anomaly mining is the task of finding irregularities in the data. It finds applications in a plethora of domains, such as security, finance, astronomy, and medicine. Despite its immense popularity, however, it remains an extremely challenging task for many real world applications. For many practitioners, the task is poorly defined and under-specified as existing definitions and solutions are often too simplistic and do not directly correspond to the needs of modern applications. This project takes the essential steps to bridge the gap between research and practice to dramatically improve the usability, effectiveness, and interpretability of anomaly mining techniques, and to ultimately mature the field into a more valuable contributor to the larger world. It promises significant impact on many concrete problems, such as insider threat, tax evasion, and health-care fraud detection, important for the government, industry, and the society. Collaborations with industry and hospital partners aim to shepherd innovations into deployed technology, with tangible impact on security and healthcare.The primary agenda to achieve these goals involves developing a new framework for anomaly mining that utilizes multiple heterogeneous data sources and techniques in a corroborative fashion to fundamentally reframe our understanding and ability to define, detect, and describe real-world anomalies. The project formalizes novel definitions of complex anomalies that fuse multiple data sources, and invents complex anomaly detection algorithms that further present descriptions that provide rationale for the detected anomalies. Research also explores and models anomaly ensembles that systematically harness evidences from multiple detection techniques. Ultimately, this project strives to push the boundaries of anomaly mining as a field through this quest for principled foundations and practices.
异常挖掘是发现数据中的不规则性的任务。它在安全、金融、天文学和医学等众多领域都有应用。尽管它非常受欢迎,但是,对于许多真实的世界应用来说,它仍然是一项极具挑战性的任务。对于许多从业者来说,这项任务定义得很差,并且由于现有的定义和解决方案往往过于简单,并且不直接对应于现代应用程序的需求,因此规定不足。该项目采取了必要的步骤来弥合研究与实践之间的差距,以显着提高异常挖掘技术的可用性,有效性和可解释性,并最终使该领域成熟为更大的世界做出更有价值的贡献。它有望对许多具体问题产生重大影响,如内部威胁,逃税和医疗欺诈检测,对政府,行业和社会都很重要。与行业和医院合作伙伴的合作旨在将创新引导到部署的技术中,对安全和医疗保健产生切实的影响。实现这些目标的主要议程包括开发一个新的异常挖掘框架,该框架以确证的方式利用多个异构数据源和技术,从根本上重新构建我们定义,检测和描述真实世界异常的理解和能力。该项目形式化了融合多个数据源的复杂异常的新定义,并发明了复杂异常检测算法,进一步提供了为检测到的异常提供理论依据的描述。研究还探索和建模异常合奏,系统地利用多种检测技术的证据。最终,该项目致力于通过对原则性基础和实践的探索来推动异常采矿作为一个领域的界限。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leman Akoglu其他文献
Leman Akoglu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leman Akoglu', 18)}}的其他基金
Collaborative Research: IIS-III Towards Fair Outlier Detection
协作研究:IIS-III 迈向公平的异常值检测
- 批准号:
2310482 - 财政年份:2023
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Collective Opinion Fraud Detection: Identifying and Integrating Cues from Language, Behavior, and Networks
III:媒介:协作研究:集体意见欺诈检测:识别和整合来自语言、行为和网络的线索
- 批准号:
1733558 - 财政年份:2016
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
III: Student Travel Fellowships for KDD 2016
III: KDD 2016 学生旅行奖学金
- 批准号:
1632613 - 财政年份:2016
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
CAREER: A General Framework for Methodical and Interpretable Anomaly Mining
职业生涯:有条不紊且可解释的异常挖掘的通用框架
- 批准号:
1452425 - 财政年份:2015
- 资助金额:
$ 50.35万 - 项目类别:
Continuing Grant
III: Medium: Collaborative Research: Collective Opinion Fraud Detection: Identifying and Integrating Cues from Language, Behavior, and Networks
III:媒介:协作研究:集体意见欺诈检测:识别和整合来自语言、行为和网络的线索
- 批准号:
1408287 - 财政年份:2014
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
相似国自然基金
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
相似海外基金
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
- 批准号:
2311064 - 财政年份:2023
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
Machine-Aided General Framework for Fluctuating Dynamic Density Functional Theory (MAGFFDDFT)
波动动态密度泛函理论的机器辅助通用框架 (MAGFFDDFT)
- 批准号:
EP/X038645/1 - 财政年份:2023
- 资助金额:
$ 50.35万 - 项目类别:
Research Grant
SHF: Small: A General Framework for Accelerating AI on Resource-Constrained Edge Devices
SHF:小型:在资源受限的边缘设备上加速 AI 的通用框架
- 批准号:
2211163 - 财政年份:2022
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
The geometrical framework of General Relativity and String Theory
广义相对论和弦理论的几何框架
- 批准号:
2758423 - 财政年份:2022
- 资助金额:
$ 50.35万 - 项目类别:
Studentship
A Physics-Based Artificial Intelligence General Framework for Optimal Control of Sewer Systems to Minimize Sewer Overflows
基于物理的人工智能通用框架,用于优化控制下水道系统,最大限度地减少下水道溢流
- 批准号:
2203292 - 财政年份:2022
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: A General Framework for Responsive Static Analysis
合作研究:SHF:小型:响应式静态分析的通用框架
- 批准号:
2223825 - 财政年份:2022
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: A General Framework for Responsive Static Analysis
合作研究:SHF:小型:响应式静态分析的通用框架
- 批准号:
2223826 - 财政年份:2022
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: A General Framework for Automated Test Transfer
合作研究:SHF:Medium:自动化测试传输的通用框架
- 批准号:
2106871 - 财政年份:2021
- 资助金额:
$ 50.35万 - 项目类别:
Continuing Grant
NSF Postdoctoral Fellowship in Biology FY 2021: General plasticity kinetics: developing a universal framework of developmental plasticity
2021 财年 NSF 生物学博士后奖学金:一般可塑性动力学:开发发育可塑性的通用框架
- 批准号:
2109557 - 财政年份:2021
- 资助金额:
$ 50.35万 - 项目类别:
Fellowship Award
Collaborative Research: Aggregated Monte Carlo: A General Framework for Distributed Bayesian Inference in Massive Spatiotemporal Data
合作研究:聚合蒙特卡罗:海量时空数据中分布式贝叶斯推理的通用框架
- 批准号:
2220840 - 财政年份:2021
- 资助金额:
$ 50.35万 - 项目类别:
Standard Grant