A Physics-Based Artificial Intelligence General Framework for Optimal Control of Sewer Systems to Minimize Sewer Overflows
基于物理的人工智能通用框架,用于优化控制下水道系统,最大限度地减少下水道溢流
基本信息
- 批准号:2203292
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A combined sewer system collects rainwater runoff, domestic sewage, and industrial wastewater in the same pipe. Under normal conditions, a combined sewer system transports the collected wastewater to a plant where it is treated and discharged to surface water systems including rivers, lakes, estuaries, and oceans. During heavy rainfall events or snowmelts, the volume of wastewater transported by a combined sewer system can sometimes exceed the treatment plant's capacity resulting in overflows into nearby streams and surface water bodies. Approximately 850 billion gallons of untreated combined sewer overflows are discharged every year in the United States. These sewer overflows have an adverse impact on the environment and communities including the contamination of drinking water sources and the closures of recreational beaches. The overarching goal of this project is to develop and validate machine learning tools to forecast the location and volume of potential sewer overflows. To advance this goal, the Principal Investigators (PIs) propose to integrate data science (big data algorithms), lab-scale experiments, and physics-based numerical models to accelerate the availability of machine learning models to guide and optimize the operation of sewer systems with the aim of managing and reducing the environmental impact of sewer overflows. The successful completion of this project will benefit society through the development of fundamental knowledge and new modeling tools to support the management and reduction of sewer overflows. Additional benefits to society will be achieved through outreach and educational activities including the mentoring of two graduate students and six undergraduate students at Florida International University.As the frequency and intensity of extreme weather events such as heavy rainfalls and flooding increase due to climate change, sewer overflows will become more frequent and severe. To manage sewer overflows, a new generation of ultrafast models are needed to predict when and where they are likely to occur, and the sequence of decisions needed to minimize overflows before heavy rainfall occurs. The overarching goal of this project is to integrate artificial intelligence (AI), big data, and physics-based numerical models to accelerate the availability of machine learning (ML) models that could be used to predict, manage, and reduce sewer overflows. The specific objectives of the research are to: 1) Implement and validate a sewer overflow model for an existing open-source sewer flow dynamics model that currently cannot simulate sewer overflows; 2) Develop a general physics-based AI open-source framework for predicting the location and volume of combined sewer overflows for a given fixed set of operational scenarios (e.g., gate positions are fixed); and 3) Develop an AI open-source framework for determining an optimal sequence of decision variables/scenarios at control gates for minimizing combined sewer overflows. In addition to the specific objectives listed above, the Principal Investigators (PI) propose to combine and integrate their proposed new ML model with various open-source physical-based models to build a new modeling framework named IMPACTO (Integrated Modeling for Prediction of sewer overflows and Analytics for optimal control of gates in Closed-conduits and Tunnels to minimize Overflows). Finally, the PIs propose to validate IMPACTO by training it to (1) predict the location and volume of combined sewer overflows in two existing sewer systems and (2) determine the optimal sequence of decision variables at control gates (e.g., flow discharges) to minimize sewer overflows. The successful completion of this project has the potential for transformative impact through the development and validation of an integrated, and open-source model that could be used to predict, manage, and reduce the occurrence of combined sewer overflows. To implement the education and outreach activities of the project, the PIs plan to develop an educational module with hands-on activities on sewer overflows for middle schools from underrepresented groups in collaboration with the Florida International University (FIU) Engineers on Wheel program. In addition, the PIs propose to leverage the FIU Louis Stokes Alliances for Minority Participation program to recruit six undergraduate students from underrepresented groups to work on the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
合流制下水道系统将雨水径流、生活污水和工业废水收集在同一管道中。在正常情况下,联合下水道系统将收集的废水输送到工厂,在那里进行处理并排放到地表水系统,包括河流,湖泊,河口和海洋。在暴雨或融雪期间,合流下水道系统输送的废水量有时会超过处理厂的处理能力,导致溢流到附近的河流和地表水体中。在美国,每年约有8500亿加仑未经处理的合流下水道溢流被排放。这些下水道溢流对环境和社区造成不利影响,包括污染饮用水源和关闭娱乐海滩。该项目的总体目标是开发和验证机器学习工具,以预测潜在下水道溢出的位置和数量。为了推进这一目标,首席研究员(PI)建议整合数据科学(大数据算法),实验室规模实验和基于物理的数值模型,以加速机器学习模型的可用性,以指导和优化下水道系统的运行,旨在管理和减少下水道溢出对环境的影响。该项目的成功完成将通过开发基础知识和新的建模工具来支持管理和减少下水道溢出,从而造福社会。将通过外展和教育活动,包括对佛罗里达国际大学的两名研究生和六名本科生进行辅导,为社会带来更多的好处。由于气候变化导致重霾和洪水等极端天气事件的频率和强度增加,下水道溢出将变得更加频繁和严重。为了管理下水道溢出,需要新一代的超快模型来预测它们可能发生的时间和地点,以及在暴雨发生之前最大限度地减少溢出所需的决策顺序。该项目的总体目标是整合人工智能(AI),大数据和基于物理的数值模型,以加速机器学习(ML)模型的可用性,这些模型可用于预测,管理和减少下水道溢出。该研究的具体目标是:1)为目前无法模拟下水道溢出的现有开源下水道流动动力学模型实现并验证下水道溢出模型; 2)开发一个基于物理学的通用AI开源框架,用于预测给定固定操作场景(例如,门的位置是固定的);以及3)开发一个AI开源框架,用于确定控制门处的决策变量/场景的最佳序列,以最大限度地减少合并的下水道溢出。除了上面列出的具体目标外,主要研究者(PI)还建议将他们提出的新ML模型与各种开源的基于物理的模型联合收割机结合并集成,以构建一个名为IMPACTO的新建模框架(用于预测下水道溢出的集成建模和用于封闭管道和隧道中的闸门优化控制的分析,以最大限度地减少溢出)。最后,PI建议通过训练IMPACTO来验证它,以(1)预测两个现有下水道系统中组合下水道溢出的位置和体积,以及(2)确定控制门处决策变量的最佳序列(例如,流量排放)以最小化下水道溢出。该项目的成功完成有可能通过开发和验证一个集成的开源模型来产生变革性的影响,该模型可用于预测,管理和减少合并下水道溢流的发生。为了实施该项目的教育和推广活动,PI计划与佛罗里达国际大学(FIU)车轮工程师方案合作,为代表性不足的群体的中学开发一个教育模块,其中包括下水道溢出的实践活动。此外,PI建议利用FIU路易斯·斯托克斯少数民族参与联盟计划,从代表性不足的群体中招募六名本科生参与该项目。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Control of Combined Sewer Systems to Minimize Sewer Overflows by Using Reinforcement Learning
利用强化学习对合流下水道系统进行优化控制以最大限度地减少下水道溢流
- DOI:10.1061/9780784484852.067
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Yin, Zeda;Leon, Arturo S.;Sharifi, Abbas;Amini, M. Hadi
- 通讯作者:Amini, M. Hadi
Physic-Informed Neural Network Approach Coupled with Boundary Conditions for Solving 1D Steady Shallow Water Equations for Riverine System
- DOI:10.1061/9780784484852.027
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Ze-gao Yin;Linglong Bian;Beichao Hu;Jimeng Shi;Arturo S. Leon
- 通讯作者:Ze-gao Yin;Linglong Bian;Beichao Hu;Jimeng Shi;Arturo S. Leon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Arturo Leon其他文献
A Remotely Operated Framework Based on Internet of Things (IoT) Technology to Release Water from Ponded Systems
基于物联网 (IoT) 技术的远程操作框架,用于从池塘系统中放水
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
V. Verma;Lin;Arturo Leon - 通讯作者:
Arturo Leon
Internet-Enabled Remotely Controlled Architecture to Release Water from Storage Units
支持互联网的远程控制架构可从存储单元中释放水
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
V. Verma;Lin;Dogukan Ozecik;Surya Srikar Sirigineedi;Arturo Leon - 通讯作者:
Arturo Leon
A Remotely Operated Software Defined Radio Based Framework to Release Water from a Network of Storage Units
一种远程操作的软件定义的基于无线电的框架,用于从存储单元网络中释放水
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
V. Verma;Lin;Arturo Leon - 通讯作者:
Arturo Leon
Arturo Leon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Arturo Leon', 18)}}的其他基金
Dynamics of Geysers in Stormsewer Systems and Novel Retrofitting Methods
雨水管道系统中间歇泉的动力学和新颖的改造方法
- 批准号:
1928850 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Dynamic Management of Water Storage in Watersheds for Reducing the Magnitude of Floods
动态管理流域蓄水以减少洪水强度
- 批准号:
1805417 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Dynamic Management of Water Storage in Watersheds for Reducing the Magnitude of Floods
动态管理流域蓄水以减少洪水强度
- 批准号:
1843038 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SBIR Phase I: A web portal for artificial intelligence (AI)-based comprehensive discovery of repositioning drugs
SBIR 第一阶段:基于人工智能 (AI) 的重新定位药物综合发现门户网站
- 批准号:
2334510 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SBIR Phase I: VoxCare: Artificial Intelligence-based Monitoring for Substance Use Indicators in Youth
SBIR 第一阶段:VoxCare:基于人工智能的青少年药物使用指标监测
- 批准号:
2335605 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
AI4HOPE: ARTIFICIAL INTELLIGENCE BASED HEALTH, OPTIMISM, PURPOSE, AND ENDURANCE IN PALLIATIVE CARE FOR DEMENTIA
AI4HOPE:基于人工智能的痴呆症姑息治疗中的健康、乐观、目标和耐力
- 批准号:
10103129 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
EU-Funded
I-Corps: Privacy-Responsive Artificial Intelligence-Based Solution for Smart Video Surveillance
I-Corps:基于隐私敏感的人工智能的智能视频监控解决方案
- 批准号:
2323757 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of artificial corneal endothelial grafts based on multimodality of decellularized matrix
基于多模态脱细胞基质的人工角膜内皮移植物的研制
- 批准号:
23H03735 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
NIMBLE - an artificial intelligence-based early warning system for bladder cancer
NIMBLE——基于人工智能的膀胱癌早期预警系统
- 批准号:
486937 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Miscellaneous Programs
Automating data acquisition and data processing pipeline via artificial intelligence and machine learning approaches to allow at-home use of a novel breast cancer screening method employing bra-based elastography imaging.
通过人工智能和机器学习方法自动化数据采集和数据处理流程,以便在家使用基于胸罩的弹性成像成像的新型乳腺癌筛查方法。
- 批准号:
486956 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Operating Grants
Establishment of integrated conservation based on artificial propagation of hard-to-propagate orchids that are almost extinct in Turkey and neighboring regions.
对土耳其及邻近地区几乎灭绝的难以繁殖的兰花进行人工繁殖,建立综合保护。
- 批准号:
23KK0196 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Utilising alternative data to develop a machine learning-based artificial intelligence platform for real-time KPI tracking of UK companies for fundamental investors
利用另类数据开发基于机器学习的人工智能平台,为基本面投资者实时跟踪英国公司的 KPI
- 批准号:
10057969 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D