SHF: Small: A General Framework for Accelerating AI on Resource-Constrained Edge Devices

SHF:小型:在资源受限的边缘设备上加速 AI 的通用框架

基本信息

  • 批准号:
    2211163
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The upward trend of the pervasive usage of edge devices provides excellent opportunities for on-device intelligence in future mobile and IoT applications, including mobile augmented reality (AR)/Virtual reality (VR), smart manufacturing, mobile healthcare, and autonomous vehicles. While these edge devices have complete software/hardware stacks to execute machine-learning models, they usually have constrained computing resources. They cannot afford to execute the machine-learning models directly. To keep up with the fast-growing deployment of mobile and IoT applications, it is urgently needed to design new neural-network architectures for accelerating artificial intelligence (AI) on resource-constrained edge devices. This proposal aims to develop a novel framework that can efficiently design neural-network architectures suitable for execution on edge devices. The proposed framework develops network architectures that simultaneously balance memory cost, computing efficiency, and prediction accuracy, which can advance on-device AI applications with low-latency and high-efficiency requirements. The new deployment optimization methods can generally benefit neural-network implementation and deployment on heterogeneous commodity computing platforms without customized hardware. The project will lead to a solid foundation for a broad range of research topics related to computing architecture design and edge-computing systems. The research results can benefit interdisciplinary curriculums with new research topics and tasks for undergraduate/graduate and minority students.This project develops a holistic framework for designing efficient and effective neural-network architectures considering edge devices’ hardware constraints. It first develops an automated hardware-aware neural-network architecture-design method to efficiently generate optimal neural-network architectures that can balance the trade-offs between the required accuracy and computational performance. A further investigation is conducted to develop novel neural-network optimization methods to reduce memory footprints and computational costs in a fine-grained way while satisfying the accuracy requirement. New pruning methods are designed to accurately track the importance of network parameters and effectively reduce pruning iterations and floating-point operations. Moreover, novel implementation mechanisms, such as weight-sharing-aware fine-tuning, dynamic partitioning, and on-demand loading schemes, are developed to minimize the loading time overhead and enable efficient deployment and evaluation of the designed architectures on edge devices. Commodity edge devices and FPGAs are employed to implement and evaluate the designed neural-network architecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
边缘设备普遍使用的上升趋势为未来的移动和物联网应用程序提供了极好的机会,包括移动增强现实(AR)/虚拟现实(VR),智能制造,移动医疗保健和自动驾驶汽车。尽管这些边缘设备具有完整的软件/硬件堆栈以执行机器学习模型,但它们通常具有限制的计算资源。他们无力直接执行机器学习模型。为了跟上移动和物联网应用程序快速增长的部署,迫切需要设计新的神经网络架构来加速人工智能(AI)在资源受限的边缘设备上。该建议旨在开发一个可以有效设计适合在边缘设备执行的神经网络体系结构的新颖框架。所提出的框架开发网络架构仅平衡内存成本,计算效率和预测准确性,可以推进具有低延迟和高效率要求的设备AI应用程序。新的部署优化方法通常可以使无定制硬件的异质商品计算平台上的中性网络实现和部署受益。该项目将为与计算体系结构设计和边缘计算系统有关的广泛研究主题奠定坚实的基础。该研究结果可以通过新的研究主题和本科生和少数民族学生的新主题和任务受益。该项目为设计高效有效的神经网络架构建筑设计了整体框架,以考虑Edge设备硬件的硬件约束。它首先开发了一种自动化的硬件感知神经网络体系结构设计方法,以有效地生成最佳的神经网络结构体系结构,以平衡所需准确性和计算性能之间的权衡。进行了进一步的研究,以开发新颖的中性网络优化方法,以细分的方式减少记忆足迹和计算成本,同时满足准确性要求。新的修剪方法旨在准确跟踪网络参数的重要性,并有效地减少迭代和浮点操作。此外,开发了新颖的实施机制,例如体重分担的微调,动态分配和按需加载方案,以最大程度地减少负载时间开销,并启用边缘设备上设计的架构的有效部署和评估。商品边缘设备和FPGA被用来实施和评估设计的神经网络架构。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响审查标准,被认为是通过评估而被视为珍贵的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Universal Targeted Adversarial Attacks Against mmWave-based Human Activity Recognition
  • DOI:
    10.1109/infocom53939.2023.10228887
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yucheng Xie;Ruizhe Jiang;Xiaonan Guo;Yan Wang;Jerry Q. Cheng;Yingying Chen
  • 通讯作者:
    Yucheng Xie;Ruizhe Jiang;Xiaonan Guo;Yan Wang;Jerry Q. Cheng;Yingying Chen
Person re-identification using wifi signals
利用wifi信号进行人员重新识别
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingying Chen其他文献

Topology-based Multi-jammer Localization in Wireless Networks
无线网络中基于拓扑的多干扰机定位
  • DOI:
    10.1051/sands/2023025
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongbo Liu;Yingying Chen;Wenyuan Xu;Zhenhua Liu;Yuchen Su
  • 通讯作者:
    Yuchen Su
UV light-assisted fabrication of Cu0.91In0.09S microspheres sensitized TiO2 nanotube arrays and their photoelectrochemical properties
紫外光辅助制备Cu0.91In0.09S微球敏化TiO2纳米管阵列及其光电化学性能
  • DOI:
    10.1016/j.materresbull.2014.12.071
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Xinyu Cui;Hongmei Gu;Yuanyuan Yin;Yue Guan;Shengzhong Rong;Yongkui Yin;Yingying Chen;Qunhong Wu;Yanhua Hao;Miaojing Li
  • 通讯作者:
    Miaojing Li
Label-free tri-luminophores electrochemiluminescence sensor for microRNAs detection based on three-way DNA junction structure
基于三向DNA连接结构的用于microRNA检测的无标记三发光体电化学发光传感器
  • DOI:
    10.1016/j.jelechem.2020.114935
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Xialing Hou;Zhiguang Suo;Ziheng Hu;Xinying Zhang;Yingying Chen;Lingyan Feng
  • 通讯作者:
    Lingyan Feng
Direct Load Control by Distributed Imperialist Competitive Algorithm
分布式帝国主义竞争算法的直接负载控制
Acquired persistently complete remission by decitabine-based treatment for acute myeloid leukemia with the MLL-SEPT9 fusion gene
通过基于地西他滨的 MLL-SEPT9 融合基因急性髓系白血病治疗获得持续完全缓解
  • DOI:
    10.1080/10428194.2019.1625044
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Fujue Wang;Yingying Chen;N. Jiang;Shuaige Gong;Tingyong Cao;Jin Yuan;Jiazhuo Liu;Li;Yu Wu;Yongqian Jia
  • 通讯作者:
    Yongqian Jia

Yingying Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingying Chen', 18)}}的其他基金

Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
  • 批准号:
    2311596
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: CCRI: New: Nation-wide Community-based Mobile Edge Sensing and Computing Testbeds
合作研究:CCRI:新:全国范围内基于社区的移动边缘传感和计算测试平台
  • 批准号:
    2120396
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Securing IoT and Edge Devices under Audio Adversarial Attacks
协作研究:SaTC:核心:小型:在音频对抗攻击下保护物联网和边缘设备
  • 批准号:
    2114220
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Hardware-accelerated Trustworthy Deep Neural Network
合作研究:PPoSS:规划:硬件加速的可信深度神经网络
  • 批准号:
    2028876
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Software Hardware Architecture Co-design for Low-power Heterogeneous Edge Devices
SHF:小型:协作研究:低功耗异构边缘设备的软件硬件架构协同设计
  • 批准号:
    1909963
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Security Assurance in Short Range Communication with Wireless Channel Obfuscation
SaTC:核心:小型:协作:通过无线信道混淆实现短距离通信的安全保证
  • 批准号:
    1814590
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1716500
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1826647
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Collaborative: Exploiting Physical Properties in Wireless Networks for Implicit Authentication
SaTC:核心:小型:协作:利用无线网络中的物理属性进行隐式身份验证
  • 批准号:
    1820624
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Exploiting Fine-grained WiFi Signals for Wellbeing Monitoring
NeTS:媒介:协作研究:利用细粒度 WiFi 信号进行健康监测
  • 批准号:
    1514436
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant

相似国自然基金

靶向Treg-FOXP3小分子抑制剂的筛选及其在肺癌免疫治疗中的作用和机制研究
  • 批准号:
    32370966
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
化学小分子激活YAP诱导染色质可塑性促进心脏祖细胞重编程的表观遗传机制研究
  • 批准号:
    82304478
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
  • 批准号:
    82302422
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
HMGB1/TLR4/Cathepsin B途径介导的小胶质细胞焦亡在新生大鼠缺氧缺血脑病中的作用与机制
  • 批准号:
    82371712
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
小分子无半胱氨酸蛋白调控生防真菌杀虫活性的作用与机理
  • 批准号:
    32372613
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

SHF: Small: A General-purpose Parallel and Heterogeneous Task Graph Computing System for VLSI CAD
SHF:小型:用于 VLSI CAD 的通用并行异构任务图计算系统
  • 批准号:
    2349141
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: A General Framework for Responsive Static Analysis
合作研究:SHF:小型:响应式静态分析的通用框架
  • 批准号:
    2223825
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Ubiquitous and Transparent Near-data Computing for General Purpose Processors
SHF:小型:通用处理器的无处不在且透明的近数据计算
  • 批准号:
    2200831
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: A General Framework for Responsive Static Analysis
合作研究:SHF:小型:响应式静态分析的通用框架
  • 批准号:
    2223826
  • 财政年份:
    2022
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: A General-purpose Parallel and Heterogeneous Task Graph Computing System for VLSI CAD
SHF:小型:用于 VLSI CAD 的通用并行异构任务图计算系统
  • 批准号:
    2126672
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了