NeTS: Medium: Collaborative Research: Diagnosing Datacenter Networks with Quantitative Provenance

NeTS:媒介:协作研究:通过定量来源诊断数据中心网络

基本信息

  • 批准号:
    1704189
  • 负责人:
  • 金额:
    $ 34.35万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

The increasing complexity of data center networks has made it considerably more difficult to identify the source of a networking problem when something goes wrong. However, a set of new diagnostic tools can help diagnose subtle bugs that would be difficult to find with existing tools.One promising approach is based on data provenance, a concept that was originally developed by the database community but is now increasingly being applied in the networking domain. In this approach, the network keeps track of causality as data flows through the system -- for instance, by noting a router's configuration state that contributed to a particular forwarding decision. This information can then be used later to determine acomprehensive explanation of an observed networking problem.This project will develop a quantitative equivalent of provenance for data networking that can be used to reason about properties such as time or probability. The key idea is to use this provenance to improve root-cause analysis of network events. The proposed effort will develop the scientific foundations of quantitative provenance, as well as practical techniques for capturing, storing, and reasoning about it. The investigators will add several quantitative metrics to provenance: temporal, probabilistic and influence; three research thrusts will be considered, one corresponding to each of these metrics. The project will explore efficient and reusable implementations of new diagnostic tools, which will be applied to several concrete case studies.
数据中心网络日益复杂,这使得在出现问题时识别网络问题的根源变得相当困难。然而,一组新的诊断工具可以帮助诊断现有工具难以发现的细微错误。一种有希望的方法是基于数据来源,这个概念最初是由数据库社区开发的,但现在越来越多地应用于网络领域。在这种方法中,当数据流经系统时,网络会跟踪因果关系——例如,通过记录导致特定转发决策的路由器配置状态。这些信息可以在以后用于确定对观察到的网络问题的全面解释。该项目将为数据网络开发一种定量等效的来源,可用于对时间或概率等属性进行推理。关键思想是使用这种来源来改进对网络事件的根本原因分析。提议的努力将发展定量来源的科学基础,以及捕获、存储和推理它的实用技术。调查人员将为来源增加几个量化指标:时间、概率和影响;三个研究重点将被考虑,一个对应于这些指标。该项目将探索新诊断工具的高效和可重用实现,并将其应用于几个具体的案例研究。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeDoS: Defusing DoS with Dispersion Oriented Software
  • DOI:
    10.1145/3274694.3274727
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Henri Maxime Demoulin;Tavish Vaidya;Isaac Pedisich;Bob DiMaiolo;J. Qian;C. Shah;Yuankai Zhang;Ang Chen;Andreas Haeberlen;B. T. Loo;L. T. Phan;M. Sherr;C. Shields;Wenchao Zhou
  • 通讯作者:
    Henri Maxime Demoulin;Tavish Vaidya;Isaac Pedisich;Bob DiMaiolo;J. Qian;C. Shah;Yuankai Zhang;Ang Chen;Andreas Haeberlen;B. T. Loo;L. T. Phan;M. Sherr;C. Shields;Wenchao Zhou
Bypassing Tor Exit Blocking with Exit Bridge Onion Services
使用 Exit Bridge Onion Services 绕过 Tor 出口封锁
Provenance for Probabilistic Logic Programs
概率逻辑程序的起源
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Ujcich其他文献

Benjamin Ujcich的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Ujcich', 18)}}的其他基金

CAREER: Secure and Trustworthy Intent-Based Networking
职业:安全且值得信赖的基于意图的网络
  • 批准号:
    2339882
  • 财政年份:
    2024
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
  • 批准号:
    2312978
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
  • 批准号:
    2312676
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312835
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
  • 批准号:
    2312447
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
  • 批准号:
    2312711
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312836
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
  • 批准号:
    2312834
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
  • 批准号:
    2312448
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
  • 批准号:
    2312674
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
  • 批准号:
    2312710
  • 财政年份:
    2023
  • 资助金额:
    $ 34.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了