SHF: Medium: Hierarchical Tuning of Floating-Point Computations

SHF:中:浮点计算的分层调整

基本信息

  • 批准号:
    1704715
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

The project implements methods to improve the resource-efficiency of numerical computations on a variety of computing machines, ranging from supercomputers to mobile devices, by adaptively reducing data-precision based on the needs of the application. Efficiently adapting data-precision permits these machines to run larger computations and also improves the overall performance (including energy consumption) made possible by a combination of reduced computational burden as well as reduced data movement. The intellectual merits of this project are to research and develop the key steps to understand the nature of applications and computing systems, and to suitably minimize computing demands through targeted data-precision adjustment. Broader impacts of the work include training graduate students and releasing tools that the community can employ in future hardware and software product, to help minimize overall energy consumption and improve performance.Unused precision in floating-point computations ends up wasting allocated space in caches, and also causes unnecessary data movement. The technical parts of the project are to identify as well as pursue opportunities for optimally allocating precision, and to efficiently implement such allocation methods in actual codes. In addition to developing new algorithms to tune precision assisted by automated learning methods, the project develops symbolic analysis methods to serve novel roles in floating-point instruction selection and optimization in the form of superoptimizers. These tools will be released to a community of researchers interested in working toward exascale computing, and deploying applications in safety-critical devices. This work represents a synergistic combination of the investigator's skills ranging through high performance computing, formal methods, and compiler technologies.
该项目实施了一些方法,通过根据应用程序的需要自适应地降低数据精度,来提高从超级计算机到移动设备的各种计算机器上的数值计算的资源效率。有效地调整数据精度允许这些机器运行更大的计算,并通过减少计算负担和减少数据移动的组合来提高整体性能(包括能源消耗)。该项目的智力优势是研究和开发关键步骤,以了解应用程序和计算系统的性质,并通过有针对性的数据精度调整适当地减少计算需求。这项工作的更广泛影响包括培训研究生和发布社区可以在未来的硬件和软件产品中使用的工具,以帮助将整体能源消耗降至最低并提高性能。浮点计算中未使用的精度最终会浪费缓存中分配的空间,并导致不必要的数据移动。该项目的技术部分是确定并寻求最佳分配精度的机会,并在实际代码中有效地实施这种分配方法。除了开发借助自动学习方法调整精度的新算法外,该项目还开发了符号分析方法,以超级优化器的形式在浮点指令选择和优化中发挥新的作用。这些工具将被发布给一个研究社区,研究人员对致力于亿级计算,并在安全关键设备上部署应用程序感兴趣。这项工作代表了研究人员通过高性能计算、形式化方法和编译器技术的技能的协同组合。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A scalable framework for adaptive computational general relativity on heterogeneous clusters
Scalable Lazy-update Multigrid Preconditioners
可扩展的延迟更新多重网格预处理器
A Mixed Real and Floating-Point Solver
混合实数和浮点求解器
FailAmp: Relativization Transformation for Soft Error Detection in Structured Address Generation
FailAmp:结构化地址生成中软错误检测的相对化变换
  • DOI:
    10.1145/3369381
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Briggs, Ian;Das, Arnab;Baranowski, Mark;Sharma, Vishal;Krishnamoorthy, Sriram;Rakamarić, Zvonimir;Gopalakrishnan, Ganesh
  • 通讯作者:
    Gopalakrishnan, Ganesh
Multi-Level Analysis of Compiler-Induced Variability and Performance Tradeoffs
编译器引起的可变性和性能权衡的多级分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ganesh Gopalakrishnan其他文献

FTTN: Feature-Targeted Testing for Numerical Properties of NVIDIA & AMD Matrix Accelerators
FTTN:针对 NVIDIA 数值特性的特征测试
  • DOI:
    10.48550/arxiv.2403.00232
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xinyi Li;Ang Li;Bo Fang;Katarzyna Swirydowicz;Ignacio Laguna;Ganesh Gopalakrishnan
  • 通讯作者:
    Ganesh Gopalakrishnan
Observations and modeling of symmetric instability in the ocean interior in the Northwestern Equatorial Pacific
  • DOI:
    https://doi.org/10.1038/s43247-022-00362-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Hui Zhou;William K. Dewar;Wenlong Yang;Hengchang Liu;Xu Chen;Rui Li;Chuanyu Liu;Ganesh Gopalakrishnan
  • 通讯作者:
    Ganesh Gopalakrishnan
Binary Decision Diagrams as Minimal DFA
  • DOI:
    10.1201/9781315148175-20
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ganesh Gopalakrishnan
  • 通讯作者:
    Ganesh Gopalakrishnan
Retroperitoneal lymphatics on CT and MR
  • DOI:
    10.1007/s00261-006-9036-9
  • 发表时间:
    2006-08-31
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    Shalini Govil;Asha Justus;Raghuram Lakshminarayanan;Sukria Nayak;Antony Devasia;Ganesh Gopalakrishnan
  • 通讯作者:
    Ganesh Gopalakrishnan
Observations and modeling of symmetric instability in the ocean interior in the Northwestern Equatorial Pacific
西北赤道太平洋海洋内部对称不稳定性的观测和模拟
  • DOI:
    10.1038/s43247-022-00362-4
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Hui Zhou;William K. Dewar;Wenlong Yang;Hengchang Liu;Xu Chen;Rui Li;Chuanyu Liu;Ganesh Gopalakrishnan
  • 通讯作者:
    Ganesh Gopalakrishnan

Ganesh Gopalakrishnan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ganesh Gopalakrishnan', 18)}}的其他基金

REU Site: Trust and Reproducibility of Intelligent Computation
REU 站点:智能计算的信任和可重复性
  • 批准号:
    2244492
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
FMiTF: Track-2 : Rigorous and Scalable Formal Floating-Point Error Analysis from LLVM
FMiTF:Track-2:来自 LLVM 的严格且可扩展的形式浮​​点误差分析
  • 批准号:
    2319507
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: FMitF: Track-1: Correctness at Both Ends: Rigorous ML Meets Efficient Sparse Implementations
协作研究:FMitF:Track-1:两端的正确性:严格的 ML 满足高效的稀疏实现
  • 批准号:
    2124100
  • 财政年份:
    2021
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Practical and Rigorous Correctness Checking and Correctness Preservation for Irregular Parallel Programs
合作研究:SHF:Medium:不规则并行程序的实用且严格的正确性检查和正确性保持
  • 批准号:
    1956106
  • 财政年份:
    2020
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
FMiTF: Track II: Rigorous and Versatile Float-Point Precision Analysis and Tuning
FMiTF:轨道 II:严格且多功能的浮点精度分析和调整
  • 批准号:
    1918497
  • 财政年份:
    2019
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SHF: Small: Indy: Toward Safe and Fast Compiler Flags
SHF:小:Indy:迈向安全快速的编译器标志
  • 批准号:
    1817073
  • 财政年份:
    2018
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
2017 Software Infrastructure for Sustained Innovation (SI2) Principal Investigator Workshop
2017持续创新软件基础设施(SI2)首席研究员研讨会
  • 批准号:
    1702722
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
EAGER: Application-driven Data Precision Selection Methods
EAGER:应用驱动的数据精度选择方法
  • 批准号:
    1643056
  • 财政年份:
    2016
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
SI2-SSE: Scalable Multifaceted Graphical Processing Unit (GPU) Program Debugging
SI2-SSE:可扩展多方面图形处理单元 (GPU) 程序调试
  • 批准号:
    1535032
  • 财政年份:
    2015
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
XPS: EXPL: CCA: Collaborative Research: Nixing Scale Bugs in HPC Applications
XPS:EXPL:CCA:协作研究:消除 HPC 应用程序中的规模错误
  • 批准号:
    1439002
  • 财政年份:
    2014
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CyberTraining: Implementation: Medium: Training Users, Developers, and Instructors at the Chemistry/Physics/Materials Science Interface
协作研究:网络培训:实施:媒介:在化学/物理/材料科学界面培训用户、开发人员和讲师
  • 批准号:
    2321102
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
RII Track-4:@NASA: Bluer and Hotter: From Ultraviolet to X-ray Diagnostics of the Circumgalactic Medium
RII Track-4:@NASA:更蓝更热:从紫外到 X 射线对环绕银河系介质的诊断
  • 批准号:
    2327438
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了