SHF: Medium: Collaborative Research: Testing in the Era of Approximation

SHF:媒介:协作研究:近似时代的测试

基本信息

  • 批准号:
    1704790
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

Many computations, such as image processing, machine learning, and engineering simulations are inherently approximate -- they trade off quality of results for better performance. However, approximation also introduces new challenges when reasoning about program behaviors and finding bugs. At present, testing in this area requires more principled and effective approaches. Simultaneously, approximation itself provides an effective new basis for innovations in the well-trodden field of testing, thereby making testing more efficient and valuable. The project will develop a bi-directional integration of testing and automated approximation, new approach for developing and optimizing an increasingly important class of programs. The results will be embodied in open source tool sets and rigorously evaluated using open-source and proprietary applications. New educational and course materials will be developed for courses on compilers, program analysis and software engineering.More concretely, the project will develop a set of techniques and tools for testing approximate programs, including a test specification language and techniques for automated migration of existing tests to the new language, techniques for dynamic approximate-program analysis, and techniques for optimal approximation discovery. Moreover, the project will develop approximate computing techniques to improve the performance of regression testing and mutation testing.
许多计算,如图像处理、机器学习和工程模拟,本质上都是近似的--它们为了更好的性能而牺牲了结果的质量。然而,近似也引入了新的挑战时,推理程序的行为和发现错误。目前,这方面的测试需要更有原则和有效的方法。同时,近似本身为测试领域的创新提供了一个有效的新基础,从而使测试更加有效和有价值。该项目将开发测试和自动逼近的双向集成,开发和优化日益重要的一类程序的新方法。结果将纳入开放源码工具集,并使用开放源码和专有应用程序进行严格评估。该项目将为编译程序、程序分析和软件工程等课程开发新的教材和课程材料,具体而言,将开发一套测试近似程序的技术和工具,包括测试规范语言和将现有测试自动迁移到新语言的技术、动态近似程序分析技术和最佳近似发现技术。 此外,该项目将开发近似计算技术,以提高回归测试和突变测试的性能。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Testing Probabilsitic Programming Systems
测试概率规划系统
A Framework for Checking Regression Test Selection Tools
Design, implementation, and application of GPU-based Java bytecode interpreters
基于GPU的Java字节码解释器的设计、实现与应用
A framework for writing trigger-action todo comments in executable format
PSense: Automatic Sensitivity Analysis for Probabilistic Programs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Milos Gligoric其他文献

Performance Characterization of Python Runtimes for Multi-device Task Parallel Programming
  • DOI:
    10.1007/s10766-025-00788-1
  • 发表时间:
    2025-03-18
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    William Ruys;Hochan Lee;Bozhi You;Shreya Talati;Jaeyoung Park;James Almgren-Bell;Yineng Yan;Milinda Fernando;Mattan Erez;Milos Gligoric;Martin Burtscher;Christopher J. Rossbach;Keshav Pingali;George Biros
  • 通讯作者:
    George Biros

Milos Gligoric的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Milos Gligoric', 18)}}的其他基金

I-Corps: Translation Potential of Optimizing Regression Testing in Software Development
I-Corps:软件开发中优化回归测试的转化潜力
  • 批准号:
    2405355
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
  • 批准号:
    2313027
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Efficient and Trustworthy Proof Engineering
合作研究:SHF:中:高效且值得信赖的证明工程
  • 批准号:
    2107291
  • 财政年份:
    2021
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CAREER: Advancing Regression Testing: Theory and Practice
职业:推进回归测试:理论与实践
  • 批准号:
    1652517
  • 财政年份:
    2017
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
CRII: SHF: Regression Testing for Projects with Distributed Software Histories
CRII:SHF:具有分布式软件历史记录的项目的回归测试
  • 批准号:
    1566363
  • 财政年份:
    2016
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
  • 批准号:
    2313024
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了