Collaborative Research: SHF: Medium: Natural Language Models with Execution Data for Software Testing
协作研究:SHF:媒介:用于软件测试的具有执行数据的自然语言模型
基本信息
- 批准号:2313027
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2027-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Natural Language Processing (NLP) models have proven useful for various software engineering tasks, including code completion, comment generation and update, code review generation, and clone detection. Despite the importance of software testing in industry, there has been little work on using these Artificial Intelligence (AI) models for developing and maintaining test code, which is a key part of software testing in the real world. Test code differs in multiple ways from regular code: (1) Test code is structured in a specific way, with steps for setting up a test environment and comparing expected results; (2) Test code has richer context, such as the specific methods and code it is testing (code under test); (3) Test code uses different code elements than the code under test, i.e., it has a different control structure; (4) Test code has specific input values and expected results; (5) Unlike regular code, test code can be readily executed.The goal of this project is to increase the productivity of software engineers via NLP models that simplify the development and maintenance of tests (NLP4Test). Specifically, tasks include test generation and completion, test update (when the underlying code changes), and automatically migrating tests across different programming languages. This project explores testing both general codebases and emerging machine learning (ML) applications. The project targets a novel domain -- NLP4Test, and this domain requires innovative NLP models. The outcome of this project will include novel techniques, implementations of these techniques, and extensive evaluations on open-source projects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然语言处理(NLP)模型已被证明对各种软件工程任务非常有用,包括代码完成,注释生成和更新,代码审查生成和克隆检测。尽管软件测试在工业中很重要,但很少有人使用这些人工智能(AI)模型来开发和维护测试代码,这是真实的世界中软件测试的关键部分。 测试代码在多个方面与常规代码不同:(1)测试代码以特定方式结构化,具有用于设置测试环境和比较预期结果的步骤;(2)测试代码具有更丰富的上下文,例如它正在测试的特定方法和代码(测试中的代码);(3)测试代码使用与测试中的代码不同的代码元素,即,它具有不同的控制结构;(4)测试代码有特定的输入值和预期的结果;(5)与常规代码不同,测试代码可以很容易地执行。具体来说,任务包括测试生成和完成、测试更新(当底层代码更改时)以及跨不同编程语言自动迁移测试。该项目探索测试通用代码库和新兴的机器学习(ML)应用程序。该项目针对一个新的领域-NLP 4 Test,该领域需要创新的NLP模型。该项目的成果将包括新技术、这些技术的实现以及对开源项目的广泛评估。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multilingual Code Co-evolution using Large Language Models
- DOI:10.1145/3611643.3616350
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Jiyang Zhang;Pengyu Nie;Junyi Jessy Li;Miloš Gligorić
- 通讯作者:Jiyang Zhang;Pengyu Nie;Junyi Jessy Li;Miloš Gligorić
JOG: Java JIT Peephole Optimizations and Tests from Patterns
JOG:Java JIT 窥孔优化和模式测试
- DOI:
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Zang, Zhiqiang;Thimmaiah, Aditya;Gligoric, Milos
- 通讯作者:Gligoric, Milos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Milos Gligoric其他文献
Performance Characterization of Python Runtimes for Multi-device Task Parallel Programming
- DOI:
10.1007/s10766-025-00788-1 - 发表时间:
2025-03-18 - 期刊:
- 影响因子:0.900
- 作者:
William Ruys;Hochan Lee;Bozhi You;Shreya Talati;Jaeyoung Park;James Almgren-Bell;Yineng Yan;Milinda Fernando;Mattan Erez;Milos Gligoric;Martin Burtscher;Christopher J. Rossbach;Keshav Pingali;George Biros - 通讯作者:
George Biros
Milos Gligoric的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Milos Gligoric', 18)}}的其他基金
I-Corps: Translation Potential of Optimizing Regression Testing in Software Development
I-Corps:软件开发中优化回归测试的转化潜力
- 批准号:
2405355 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Efficient and Trustworthy Proof Engineering
合作研究:SHF:中:高效且值得信赖的证明工程
- 批准号:
2107291 - 财政年份:2021
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
SHF: Medium: Collaborative Research: Testing in the Era of Approximation
SHF:媒介:协作研究:近似时代的测试
- 批准号:
1704790 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
CAREER: Advancing Regression Testing: Theory and Practice
职业:推进回归测试:理论与实践
- 批准号:
1652517 - 财政年份:2017
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
CRII: SHF: Regression Testing for Projects with Distributed Software Histories
CRII:SHF:具有分布式软件历史记录的项目的回归测试
- 批准号:
1566363 - 财政年份:2016
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 90万 - 项目类别:
Standard Grant