CSR: Medium: Optimal Control of Approximate Computing Systems

CSR:中:近似计算系统的最优控制

基本信息

  • 批准号:
    1705092
  • 负责人:
  • 金额:
    $ 59.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-10-01 至 2021-09-30
  • 项目状态:
    已结题

项目摘要

Computing is increasingly constrained by energy both at the low end in portable devices like cell phones and at the high end in large-scale data centers. Therefore, reducing the energy expended in computation is one of the most important problems facing Computer Science today. By taking computational shortcuts such as not executing certain portions of the program or executing them with lower accuracy, it is possible in many applications, for instance video processing, to reduce energy requirements without substantially affecting the quality of the output. The goal of the Capri project is to build a system that can optimize the energy consumption of a program in these ways while guaranteeing that the output quality stays within some bound specified by the programmer.There are two major problems that must be solved: (i) building models to characterize the output quality and energy behavior of a program, and (ii) using these models to solve a constrained optimization problem to determine how approximation can be used. Capri will use state-of-the-art machine learning techniques to build program models for output quality and energy behavior, and will employ modern non-linear optimization algorithms to solve the constrained optimization problem. The project will produce scalable open-loop and closed-loop control systems for optimizing applications for energy efficiency. The project includes presenting tutorials on information-efficient computing at conferences like Principles and Practice of Parallel Programming (PPoPP) and High-Performance Computer Architecture (HPCA), and incorporate this material into classes and make it publicly available. All data and outputs produced by the Capri project will be made available at this website: http://iss.ices.utexas.edu/.
计算越来越受到能源的限制,无论是在低端的便携式设备(如手机)还是在高端的大型数据中心。因此,减少计算中消耗的能量是当今计算机科学面临的最重要的问题之一。通过采取计算捷径,例如不执行程序的某些部分或以较低的精度执行它们,在许多应用中,例如视频处理,可以减少能量需求,而不会实质上影响输出的质量。卡普里项目的目标是建立一个系统,可以优化程序的能源消耗,同时保证输出质量保持在程序员指定的范围内。有两个主要问题必须解决:(i)建立模型以表征程序的输出质量和能量行为,以及(ii)使用这些模型来求解约束优化问题以确定如何使用近似。卡普里将使用最先进的机器学习技术来构建输出质量和能源行为的程序模型,并将采用现代非线性优化算法来解决约束优化问题。该项目将生产可扩展的开环和闭环控制系统,以优化能源效率的应用。该项目包括在并行编程原理与实践(PPoPP)和高性能计算机体系结构(HPCA)等会议上提供有关信息高效计算的教程,并将这些材料纳入课堂并公开提供。卡普里项目产生的所有数据和产出将在以下网站上提供:http://iss.ices.utexas.edu/。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keshav Pingali其他文献

Look Left, Look Right, Look Left Again: An Application of Fractal Symbolic Analysis to Linear Algebra Code Restructuring
Performance Characterization of Python Runtimes for Multi-device Task Parallel Programming
  • DOI:
    10.1007/s10766-025-00788-1
  • 发表时间:
    2025-03-18
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    William Ruys;Hochan Lee;Bozhi You;Shreya Talati;Jaeyoung Park;James Almgren-Bell;Yineng Yan;Milinda Fernando;Mattan Erez;Milos Gligoric;Martin Burtscher;Christopher J. Rossbach;Keshav Pingali;George Biros
  • 通讯作者:
    George Biros
Supermodeling, a convergent data assimilation meta-procedure used in simulation of tumor progression
  • DOI:
    10.1016/j.camwa.2022.03.025
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Maciej Paszyński;Leszek Siwik;Witold Dzwinel;Keshav Pingali
  • 通讯作者:
    Keshav Pingali

Keshav Pingali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keshav Pingali', 18)}}的其他基金

SPX: Collaborative Research: Mongo Graph Machine (MGM): A Flash-Based Appliance for Large Graph Analytics
SPX:协作研究:Mongo Graph Machine (MGM):基于闪存的大型图形分析设备
  • 批准号:
    1725322
  • 财政年份:
    2017
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
SHF: Small: Efficient Parallel Execution of Irregular, Ordered Algorithms
SHF:小型:不规则有序算法的高效并行执行
  • 批准号:
    1618425
  • 财政年份:
    2016
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CSR: Medium: Collaborative Research: Programming Abstractions and Systems Support for GPU-Based Acceleration of Irregular Applications
CSR:媒介:协作研究:基于 GPU 的不规则应用加速的编程抽象和系统支持
  • 批准号:
    1406355
  • 财政年份:
    2014
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant
XPS: FP: Collaborative Research: Parallel Irregular Programs: From High-Level Specifications to Run-time Optimizations
XPS:FP:协作研究:并行不规则程序:从高级规范到运行时优化
  • 批准号:
    1337281
  • 财政年份:
    2013
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Conceptualizing an Institute for Using Inter-Domain Abstractions to Support Inter-Disciplinary Applications
协作研究:概念化一个使用跨域抽象来支持跨学科应用的研究所
  • 批准号:
    1216701
  • 财政年份:
    2012
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
SHF: Small: Autograph: A System for Synthesizing Concurrent Data Structure Implementations
SHF:小型:Autograph:综合并发数据结构实现的系统
  • 批准号:
    1218568
  • 财政年份:
    2012
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CSR: Large: Collaborative Research: Kali: A System for Sequential Programming of Multicore Processors
CSR:大型:协作研究:Kali:多核处理器顺序编程系统
  • 批准号:
    1111766
  • 财政年份:
    2011
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Language and System Support for Petascale Irregular Applications
对 Petascale 不规则应用程序的语言和系统支持
  • 批准号:
    0833162
  • 财政年份:
    2008
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
The Galois Approach to Optimistic Parallelization
乐观并行化的伽罗瓦方法
  • 批准号:
    0702353
  • 财政年份:
    2007
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CSR-AES: Optimizations for Optimistic Parallelization Systems
CSR-AES:乐观并行化系统的优化
  • 批准号:
    0719966
  • 财政年份:
    2007
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant

相似海外基金

CCF: AF: Medium: Towards Optimal Pseudorandomness
CCF:AF:中:走向最佳伪随机性
  • 批准号:
    2312573
  • 财政年份:
    2023
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210505
  • 财政年份:
    2022
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards designing optimal learning procedures via precise medium-dimensional asymptotic analysis
协作研究:通过精确的中维渐近分析设计最佳学习程序
  • 批准号:
    2210506
  • 财政年份:
    2022
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Towards optimal robot locomotion in fluids through physics-informed learning with distributed sensing
CPS:中:协作研究:通过分布式传感的物理信息学习实现流体中的最佳机器人运动
  • 批准号:
    2227062
  • 财政年份:
    2021
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Estimation, Learning, and Memory: The Quest for Statistically Optimal Algorithms
AF:媒介:协作研究:估计、学习和记忆:追求统计最优算法
  • 批准号:
    2212841
  • 财政年份:
    2021
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant
CPS: Medium: Collaborative Research: Towards optimal robot locomotion in fluids through physics-informed learning with distributed sensing
CPS:中:协作研究:通过分布式传感的物理信息学习实现流体中的最佳机器人运动
  • 批准号:
    1932130
  • 财政年份:
    2020
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
Constrained optimal control of medium-voltage variable speed drives
中压变速驱动器的约束最优控制
  • 批准号:
    432509817
  • 财政年份:
    2020
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Research Grants
CPS: Medium: Collaborative Research: Towards optimal robot locomotion in fluids through physics-informed learning with distributed sensing
CPS:中:协作研究:通过分布式传感的物理信息学习实现流体中的最佳机器人运动
  • 批准号:
    1931893
  • 财政年份:
    2020
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Towards optimal robot locomotion in fluids through physics-informed learning with distributed sensing
CPS:中:协作研究:通过分布式传感的物理信息学习实现流体中的最佳机器人运动
  • 批准号:
    1931929
  • 财政年份:
    2020
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Standard Grant
CNS Core: Medium: Collaborative Research: Towards Enabling Optimal Performance-Cost Tradeoffs in Distributed Storage
CNS 核心:中:协作研究:实现分布式存储中的最佳性能与成本权衡
  • 批准号:
    1900665
  • 财政年份:
    2019
  • 资助金额:
    $ 59.92万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了