CPS: Medium: Collaborative Research: Towards optimal robot locomotion in fluids through physics-informed learning with distributed sensing
CPS:中:协作研究:通过分布式传感的物理信息学习实现流体中的最佳机器人运动
基本信息
- 批准号:2227062
- 负责人:
- 金额:$ 32.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fishes are masters of locomotion in fluids owing to their highly integrated biological sensing, computing and motor systems. They are adept at collecting and exploiting rich information from the surrounding fluids for underwater sensing and locomotion control. Inspired and informed by fish swimming, this research aims to develop a novel bio-inspired cyber-physical system (CPS) that integrates the ?physical? robot fish and fluid environment with the ?cyber? robot control & machine learning algorithms. Specifically, this CPS system includes i) a pressure sensory skin with distributed sensing capability to collect flow information, ii) control and learning algorithms that compute robot motor signals, output by central pattern generators (CPGs) which receive pressure sensory feedback, iii) a robot fish platform to implement and validate the CPS framework for underwater sensing and control tasks, and iv) experimental and computational methods to investigate and model the underlying fluid physics. This CPS system will have immediate impacts on the core CPS research areas such as design, control, data analytics, autonomy, and real-time systems. It will also significantly impact a wide range of engineering applications which demand distributed sensing, control and adaptive actuation. Examples include human-machine interactions, medical robots, unmanned aerial/underwater vehicles, drug dosing, medical therapeutics, and space deployable structures among others. Leveraging the multidisciplinary nature of this research, this award will support a variety of educational and outreach activities. In particular, a list of activities in broadening participation in engineering will be carried out. This research project integrates multiple CPS technologies to develop bio-inspired technologies for swarm control of fish. These include inthanovations in a pressure sensitive skin project will first develop a distributed pressure sensitive synthetic skin, which will be installed on robotic fishes to map the pressure distribution on their body and caudal-fin surfaces. The distributed pressure information will then be used in a feedback control policy that modulates CPGs to produce caudal-fin motion patterns of the robotic fishes. The control policy and the caudal-fin motion patterns will be optimized via reinforcement learning first in a surrogate fluid environment and then in the true fluid environment. The surrogate fluid environment will be developed using data-driven non-parametric models informed by physics-based hydrodynamic models of fish swimming, trained using combined experimental and Computational Fluid Dynamics (CFD) simulation data. The above control-learning methods will also be used to achieve efficient schooling in a group of robotic fishes, individually controlled by a CPG, which interacts with each other through surrounding fluids and pressure sensory feedback. The optimized swimming/schooling performance of robotic fishes and the underlying physics will be studied using CFD simulation. Together, this research will advance CPS knowledge on: 1) the design and creation of electronic and sensor materials and devices for robot skin applications; 2) the development of data-efficient, physics-informed learning methods for robotic systems that operate in complex environments, especially leveraging the recent progress on deep learning to exploit the spatial and temporal richness of the pressure data for underwater sensing and robot control; and 3) the flow physics and modeling of fish swimming.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
鱼类是流体运动的大师,因为它们高度集成了生物传感、计算和运动系统。它们善于从周围的流体中收集和利用丰富的信息,用于水下传感和运动控制。受鱼类游泳的启发和启发,本研究旨在开发一种新型的生物启发的网络物理系统(CPS),该系统集成了物理?机器鱼与流体环境的配合?机器人控制&机器学习算法。具体来说,该CPS系统包括i)一个具有分布式传感能力的压力传感皮肤,用于收集流量信息;ii)控制和学习算法,用于计算机器人电机信号,由接收压力传感反馈的中央模式发生器(cpg)输出;iii)一个机器鱼平台,用于实施和验证用于水下传感和控制任务的CPS框架。iv)实验和计算方法来研究和模拟潜在的流体物理。该CPS系统将对设计、控制、数据分析、自治和实时系统等核心CPS研究领域产生直接影响。它还将对需要分布式传感、控制和自适应驱动的广泛工程应用产生重大影响。例子包括人机交互、医疗机器人、无人机/水下航行器、药物给药、医疗疗法和空间可展开结构等。利用这项研究的多学科性质,该奖项将支持各种教育和推广活动。特别是,将进行一份扩大工程参与的活动清单。该研究项目整合了多种CPS技术,以开发生物启发技术来控制鱼群。其中包括压力敏感皮肤项目的创新,该项目将首先开发一种分布式压力敏感合成皮肤,该皮肤将安装在机器鱼身上,以绘制其身体和尾鳍表面的压力分布。这些分布的压力信息将被用于反馈控制策略,该策略可以调节cpg来产生机器鱼的尾鳍运动模式。首先在替代流体环境中,然后在真实流体环境中,通过强化学习对控制策略和尾鳍运动模式进行优化。替代流体环境将使用数据驱动的非参数模型来开发,这些模型由基于物理的鱼类游泳流体动力学模型提供信息,并使用实验和计算流体动力学(CFD)模拟数据进行组合训练。上述控制学习方法也将用于实现一组机器鱼的有效学习,这些机器鱼由一个CPG单独控制,通过周围的流体和压力感官反馈相互作用。利用CFD模拟研究机器鱼的优化游泳/鱼群性能及其潜在的物理特性。总之,这项研究将推进CPS知识:1)机器人皮肤应用的电子和传感器材料和设备的设计和创造;2)为在复杂环境中运行的机器人系统开发数据高效、物理知识丰富的学习方法,特别是利用深度学习的最新进展,利用水下传感和机器人控制的压力数据的时空丰富性;3)鱼类游泳的流动物理与建模。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Elastic electronics based on micromesh-structured rubbery semiconductor films
- DOI:10.1038/s41928-022-00874-z
- 发表时间:2022-11-28
- 期刊:
- 影响因子:34.3
- 作者:Guan, Ying-Shi;Ershad, Faheem;Yu, Cunjiang
- 通讯作者:Yu, Cunjiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cunjiang Yu其他文献
Fully rubbery stretchable electronics, sensors, and smart skins
- DOI:
10.1117/12.2518728 - 发表时间:
2019-05 - 期刊:
- 影响因子:0
- 作者:
Cunjiang Yu - 通讯作者:
Cunjiang Yu
Stretchable Electronics: Rubbery Electronics Fully Made of Stretchable Elastomeric Electronic Materials (Adv. Mater. 15/2020)
可拉伸电子产品:完全由可拉伸弹性电子材料制成的橡胶电子产品(Adv. Mater. 15/2020)
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Sim;Zhoulyu Rao;Faheem Ershad;Cunjiang Yu - 通讯作者:
Cunjiang Yu
A battery-free nanofluidic intracellular delivery patch for internal organs
一种用于内部器官的无电池纳米流体细胞内递送贴片
- DOI:
10.1038/s41586-025-08943-x - 发表时间:
2025-04-30 - 期刊:
- 影响因子:48.500
- 作者:
Dedong Yin;Pan Wang;Yongcun Hao;Wei Yue;Xinran Jiang;Kuanming Yao;Yuqiong Wang;Xinxin Hang;Ao Xiao;Jingkun Zhou;Long Lin;Zhoulyu Rao;Han Wu;Feng Liu;Zaizai Dong;Meng Wu;Chenjie Xu;Jiandong Huang;Honglong Chang;Yubo Fan;Xinge Yu;Cunjiang Yu;Lingqian Chang;Mo Li - 通讯作者:
Mo Li
Hybrid zinc oxide nanocoating on titanium implants: Controlled drug release for enhanced antibacterial and osteogenic performance in infectious conditions
钛植入物上的混合氧化锌纳米涂层:在感染条件下控制药物释放以增强抗菌和成骨性能
- DOI:
10.1016/j.actbio.2024.09.039 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:9.600
- 作者:
Juncen Zhou;Hanbo Wang;Sannakaisa Virtanen;Lukasz Witek;Hongzhou Dong;David Thanassi;Jie Shen;Yunzhi Peter Yang;Cunjiang Yu;Donghui Zhu - 通讯作者:
Donghui Zhu
Multidimensional free shape-morphing flexible neuromorphic devices with regulation at arbitrary points
具有任意点调节的多维自由形状变形柔性神经形态器件
- DOI:
10.1038/s41467-024-55670-4 - 发表时间:
2025-01-17 - 期刊:
- 影响因子:15.700
- 作者:
Jiaqi Liu;Chengpeng Jiang;Qianbo Yu;Yao Ni;Cunjiang Yu;Wentao Xu - 通讯作者:
Wentao Xu
Cunjiang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cunjiang Yu', 18)}}的其他基金
CAREER: Conformal Stamp Printing for 3D Curvilinear Electronics Manufacturing
职业:用于 3D 曲线电子制造的保形印章打印
- 批准号:
2224645 - 财政年份:2022
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: Transforming Cardiotoxic Drug Screening Using Bioprinted Myocardial Tissue Model with Self-Sensing Capacity
合作研究:利用具有自我感知能力的生物打印心肌组织模型改变心脏毒性药物筛选
- 批准号:
2227063 - 财政年份:2022
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: Transforming Cardiotoxic Drug Screening Using Bioprinted Myocardial Tissue Model with Self-Sensing Capacity
合作研究:利用具有自我感知能力的生物打印心肌组织模型改变心脏毒性药物筛选
- 批准号:
1936151 - 财政年份:2020
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Towards optimal robot locomotion in fluids through physics-informed learning with distributed sensing
CPS:中:协作研究:通过分布式传感的物理信息学习实现流体中的最佳机器人运动
- 批准号:
1931893 - 财政年份:2020
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
CAREER: Conformal Stamp Printing for 3D Curvilinear Electronics Manufacturing
职业:用于 3D 曲线电子制造的保形印章打印
- 批准号:
1554499 - 财政年份:2016
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: A Bioinspired Reconfigurable Optofluidic Device with Tunable Field-of-View and Adaptive Focusing Power
合作研究:具有可调视场和自适应聚焦能力的仿生可重构光流控装置
- 批准号:
1509763 - 财政年份:2015
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322534 - 财政年份:2024
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:
2322533 - 财政年份:2024
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
- 批准号:
2311084 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
- 批准号:
2312092 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Sensor Attack Detection and Recovery in Cyber-Physical Systems
合作研究:CPS:中:网络物理系统中的传感器攻击检测和恢复
- 批准号:
2333980 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: An Online Learning Framework for Socially Emerging Mixed Mobility
协作研究:CPS:媒介:社会新兴混合出行的在线学习框架
- 批准号:
2401007 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
- 批准号:
2235231 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
- 批准号:
2223987 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
Collaborative Research: CPS: Medium: Mutualistic Cyber-Physical Interaction for Self-Adaptive Multi-Damage Monitoring of Civil Infrastructure
合作研究:CPS:中:土木基础设施自适应多损伤监测的互信息物理交互
- 批准号:
2305882 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 32.52万 - 项目类别:
Standard Grant