SPX: Collaborative Research: Mongo Graph Machine (MGM): A Flash-Based Appliance for Large Graph Analytics
SPX:协作研究:Mongo Graph Machine (MGM):基于闪存的大型图形分析设备
基本信息
- 批准号:1725322
- 负责人:
- 金额:$ 27.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-10-01 至 2021-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We live in the age of big data. In many problem domains such as data-mining, machine learning, scientific computing, and the study of social networks, the data deals with relationships between pairs of entities, and is represented by a data structure called a graph. Graphs of interest today may have hundreds of billions of entities, and trillions of relationships between these entities. Large-scale graph processing is typically done in data-centers which are huge clusters of power hungry computers. The proposed Mongo Graph Machine (MGM) project will explore a different solution known as out-of-core processing. In this system, graphs will be stored in flash memory, which is much cheaper, denser and cooler than DRAMs, and processed using a combination of specialized circuits called FPGAs in tandem with a conventional processor. A programming system will be developed to hide this complexity from the end-user. The resulting system will be small enough to fit under a desk and dramatically more energy-efficient while providing powerful graph processing capability.The MGM project will address the problem of storing and processing extreme-scale graphs by using in-storage acceleration based on NAND flash chips with an attached FPGA. A single machine can accommodate 1 TB to 16 TBs of flash memory using current NAND technology. This configuration provides the flash storage necessary to store very large graphs and the computational power necessary to saturate the bandwidth of the flash. To address the programming problem for this architecture, the project will develop compiler technology and FPGA accelerators that will permit developers to write applications in the high-level programming model, leaving it to the system to exploit parallelism and optimize memory accesses for the access characteristics of flash storage. The software system will be based on the Galois system, which has been shown to scale to hundreds of processors on large shared-memory machines.
我们生活在大数据时代。在许多问题领域,如数据挖掘、机器学习、科学计算和社会网络研究中,数据处理实体对之间的关系,并由称为图的数据结构来表示。今天感兴趣的图表可能有数千亿个实体,以及这些实体之间数万亿的关系。大规模的图形处理通常在数据中心完成,这些数据中心是耗电的计算机的巨大集群。拟议中的Mongo Graph Machine(MGM)项目将探索一种不同的解决方案,即内核外处理。在这个系统中,图形将被存储在闪存中,闪存比DRAM更便宜、更密集、更酷,并使用称为现场可编程门阵列的专门电路的组合与传统处理器一起处理。将开发一个编程系统,对最终用户隐藏这一复杂性。由此产生的系统将足够小,可以放在桌子下,在提供强大的图形处理能力的同时,大大提高了能效。米高梅项目将通过使用基于NAND闪存芯片和附加FPGA的存储加速来解决存储和处理极端规模图形的问题。使用当前的NAND技术,一台机器可以容纳1 TB到16 TB的闪存。这种配置提供了存储非常大的图形所需的闪存存储,以及使闪存带宽饱和所需的计算能力。为了解决该体系结构的编程问题,该项目将开发编译器技术和FPGA加速器,允许开发人员以高级编程模型编写应用程序,将利用并行性和针对闪存的访问特性优化存储器访问的任务留给系统。该软件系统将基于Galois系统,该系统已被证明可在大型共享内存机器上扩展到数百个处理器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keshav Pingali其他文献
Look Left, Look Right, Look Left Again: An Application of Fractal Symbolic Analysis to Linear Algebra Code Restructuring
- DOI:
10.1023/b:ijpp.0000042084.99636.a0 - 发表时间:
2004-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Vijay Menon;Keshav Pingali - 通讯作者:
Keshav Pingali
Performance Characterization of Python Runtimes for Multi-device Task Parallel Programming
- DOI:
10.1007/s10766-025-00788-1 - 发表时间:
2025-03-18 - 期刊:
- 影响因子:0.900
- 作者:
William Ruys;Hochan Lee;Bozhi You;Shreya Talati;Jaeyoung Park;James Almgren-Bell;Yineng Yan;Milinda Fernando;Mattan Erez;Milos Gligoric;Martin Burtscher;Christopher J. Rossbach;Keshav Pingali;George Biros - 通讯作者:
George Biros
Supermodeling, a convergent data assimilation meta-procedure used in simulation of tumor progression
- DOI:
10.1016/j.camwa.2022.03.025 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:2.500
- 作者:
Maciej Paszyński;Leszek Siwik;Witold Dzwinel;Keshav Pingali - 通讯作者:
Keshav Pingali
Keshav Pingali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keshav Pingali', 18)}}的其他基金
CSR: Medium: Optimal Control of Approximate Computing Systems
CSR:中:近似计算系统的最优控制
- 批准号:
1705092 - 财政年份:2017
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SHF: Small: Efficient Parallel Execution of Irregular, Ordered Algorithms
SHF:小型:不规则有序算法的高效并行执行
- 批准号:
1618425 - 财政年份:2016
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
CSR: Medium: Collaborative Research: Programming Abstractions and Systems Support for GPU-Based Acceleration of Irregular Applications
CSR:媒介:协作研究:基于 GPU 的不规则应用加速的编程抽象和系统支持
- 批准号:
1406355 - 财政年份:2014
- 资助金额:
$ 27.99万 - 项目类别:
Continuing Grant
XPS: FP: Collaborative Research: Parallel Irregular Programs: From High-Level Specifications to Run-time Optimizations
XPS:FP:协作研究:并行不规则程序:从高级规范到运行时优化
- 批准号:
1337281 - 财政年份:2013
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Collaborative Research: Conceptualizing an Institute for Using Inter-Domain Abstractions to Support Inter-Disciplinary Applications
协作研究:概念化一个使用跨域抽象来支持跨学科应用的研究所
- 批准号:
1216701 - 财政年份:2012
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SHF: Small: Autograph: A System for Synthesizing Concurrent Data Structure Implementations
SHF:小型:Autograph:综合并发数据结构实现的系统
- 批准号:
1218568 - 财政年份:2012
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
CSR: Large: Collaborative Research: Kali: A System for Sequential Programming of Multicore Processors
CSR:大型:协作研究:Kali:多核处理器顺序编程系统
- 批准号:
1111766 - 财政年份:2011
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
Language and System Support for Petascale Irregular Applications
对 Petascale 不规则应用程序的语言和系统支持
- 批准号:
0833162 - 财政年份:2008
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
The Galois Approach to Optimistic Parallelization
乐观并行化的伽罗瓦方法
- 批准号:
0702353 - 财政年份:2007
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
CSR-AES: Optimizations for Optimistic Parallelization Systems
CSR-AES:乐观并行化系统的优化
- 批准号:
0719966 - 财政年份:2007
- 资助金额:
$ 27.99万 - 项目类别:
Continuing Grant
相似海外基金
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2408925 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Scalable Neural Network Paradigms to Address Variability in Emerging Device based Platforms for Large Scale Neuromorphic Computing
SPX:协作研究:可扩展神经网络范式,以解决基于新兴设备的大规模神经形态计算平台的可变性
- 批准号:
2401544 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
2412182 - 财政年份:2023
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Cross-stack Memory Optimizations for Boosting I/O Performance of Deep Learning HPC Applications
SPX:协作研究:用于提升深度学习 HPC 应用程序 I/O 性能的跨堆栈内存优化
- 批准号:
2318628 - 财政年份:2022
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
2333009 - 财政年份:2022
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: NG4S: A Next-generation Geo-distributed Scalable Stateful Stream Processing System
SPX:合作研究:NG4S:下一代地理分布式可扩展状态流处理系统
- 批准号:
2202859 - 财政年份:2022
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Memory Fabric: Data Management for Large-scale Hybrid Memory Systems
SPX:协作研究:内存结构:大规模混合内存系统的数据管理
- 批准号:
2132049 - 财政年份:2021
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Automated Synthesis of Extreme-Scale Computing Systems Using Non-Volatile Memory
SPX:协作研究:使用非易失性存储器自动合成超大规模计算系统
- 批准号:
2113307 - 财政年份:2020
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: FASTLEAP: FPGA based compact Deep Learning Platform
SPX:协作研究:FASTLEAP:基于 FPGA 的紧凑型深度学习平台
- 批准号:
1919117 - 财政年份:2019
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant
SPX: Collaborative Research: Intelligent Communication Fabrics to Facilitate Extreme Scale Computing
SPX:协作研究:促进超大规模计算的智能通信结构
- 批准号:
1918987 - 财政年份:2019
- 资助金额:
$ 27.99万 - 项目类别:
Standard Grant