Experimental validation of molecular simulation of water transport across zeolite membranes of nanoscale-thickness
水穿过纳米级厚度沸石膜传输的分子模拟实验验证
基本信息
- 批准号:1705752
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Transport of a fluid in porous media is relevant to extraction of oil from the subsurface, contaminant transport in groundwater, sequestration of carbon dioxide in underground reservoirs, and desalination of seawater through a reverse osmosis membrane to produce drinking water. The porous media offers a resistance to the transport of mass. Differences in resistance between chemical species allow for separation: one component may be unimpeded or even accelerated, while another is impeded. For example, the reverse osmosis membrane is designed to transport water quite efficiently but transport salt quite inefficiently, leading to the production of purified drinking water. To optimize design, engineering transport models of flow through porous media generally treat the system using macroscopic length scales and average resistances, but generally neglect both spatial variations and specific fluid-surface interactions on the molecular scale. Molecular-scale interactions become quite pronounced when a fluid molecule is confined in a pore that is of similar molecular dimension. Models that account for molecular interactions incorporate forcefields, but have not adequately predicted experimental observations. This project will perform an experimental validation of molecular-level transport through a porous material with strong fluid-pore interactions, and for the first time, there will be a one-to-one length scale correspondence between the experimental and theoretical studies which will probe discrepancies. In this project, desalination of seawater through a zeolite membrane is the probe system, due to strong water-zeolite electrostatic interactions that are enhanced upon confinement in sub-nanometer (~0.56 nm) pores. MFI zeolites with varying aluminum composition and thickness (varying from nano- to micro-scale) will be experimentally synthesized and characterized, then transferred onto a support surface to create membranes for transport measurements in a custom-built experimental apparatus. MD simulations will be simultaneously performed for the same zeolites with varying forcefields. The aluminum content will be varied in both techniques to alter the water-zeolite interaction. The experimentally validated molecular models will provide fundamental understanding of water interaction in confined pores, and assist in the development of predictive modeling of thermodynamic properties and transport behavior of water in nano-porous materials. The project includes several outreach components, including undergraduate research projects that target under-represented minorities, a workshop for middle school female students, and a short course in computational methods for undergraduates at Syracuse University.
流体在多孔介质中的传输与从地下提取石油、地下水中的污染物传输、地下水库中二氧化碳的封存以及通过反渗透膜进行海水淡化以生产饮用水有关。多孔介质提供了对质量传输的阻力。化学物质之间的阻力差异允许分离:一种组分可能不受阻碍甚至加速,而另一种组分则受到阻碍。例如,反渗透膜被设计成相当有效地输送水,但输送盐的效率相当低,从而产生纯化的饮用水。为了优化设计,通过多孔介质的流动的工程传输模型通常使用宏观长度尺度和平均阻力来处理系统,但通常忽略分子尺度上的空间变化和特定的流体-表面相互作用。当流体分子被限制在具有相似分子尺寸的孔中时,分子尺度的相互作用变得非常明显。解释分子相互作用的模型包含力场,但还没有充分预测实验观察结果。该项目将通过具有强流体-孔隙相互作用的多孔材料进行分子水平传输的实验验证,并且第一次将实验和理论研究之间的长度尺度对应关系进行探索。在该项目中,通过沸石膜进行海水淡化是探针系统,这是由于在亚纳米(~0.56 nm)孔中限制时增强的强的水-沸石静电相互作用。具有不同铝组成和厚度(从纳米到微米尺度变化)的MFI沸石将通过实验合成和表征,然后转移到支撑表面上以在定制的实验装置中产生用于传输测量的膜。MD模拟将同时进行相同的沸石与不同的力场。 在两种技术中铝含量将变化以改变水-沸石相互作用。实验验证的分子模型将提供水在受限孔隙中的相互作用的基本理解,并有助于在纳米多孔材料中的水的热力学性质和传输行为的预测建模的发展。该项目包括若干外联部分,包括针对代表性不足的少数群体的本科生研究项目、为中学生举办的讲习班以及为锡拉丘兹大学本科生举办的计算方法短期课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shalabh Maroo其他文献
Shalabh Maroo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shalabh Maroo', 18)}}的其他基金
CAREER: Experimental and Numerical Study of Nanoscale Evaporation Heat Transfer for Passive-Flow Driven High-Heat Flux Devices
职业:被动流驱动高热通量装置纳米级蒸发传热的实验和数值研究
- 批准号:
1454450 - 财政年份:2015
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
EAGER: Experimental Determination of Non-Evaporating Film Thickness in Pool Boiling
EAGER:池沸腾中非蒸发膜厚度的实验测定
- 批准号:
1445946 - 财政年份:2014
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Collaborative Research: Transport and Separation through Virus-Structured Nanoporous Membranes
合作研究:通过病毒结构纳米多孔膜进行运输和分离
- 批准号:
1264949 - 财政年份:2013
- 资助金额:
$ 16万 - 项目类别:
Continuing Grant
相似海外基金
Experimental identification of functional GWAS variants linked to COVID-19 severity in immune cells
免疫细胞中与 COVID-19 严重程度相关的功能性 GWAS 变异的实验鉴定
- 批准号:
10741007 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Unraveling the biological roles of specific miRNAs, from experimental target identification through functional characterization
从实验目标识别到功能表征,揭示特定 miRNA 的生物学作用
- 批准号:
10566442 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Molecular Mechanisms of Emmetropization and Experimental Myopia at Single Cell Resolution
单细胞分辨率正视化和实验性近视的分子机制
- 批准号:
10707066 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Computational and Experimental Modeling of Cardiomyocyte Proliferation
心肌细胞增殖的计算和实验模型
- 批准号:
10337761 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Molecular Mechanisms of Emmetropization and Experimental Myopia at Single Cell Resolution
单细胞分辨率正视化和实验性近视的分子机制
- 批准号:
10419734 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Computational and Experimental Modeling of Cardiomyocyte Proliferation
心肌细胞增殖的计算和实验模型
- 批准号:
10544013 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Experimental and Computational Studies in Genetic Cardiomyopathies
遗传性心肌病的实验和计算研究
- 批准号:
10443421 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Experimental and Computational Studies in Genetic Cardiomyopathies
遗传性心肌病的实验和计算研究
- 批准号:
10614628 - 财政年份:2022
- 资助金额:
$ 16万 - 项目类别:
Experimental Integration, Design and Analysis Core
实验集成、设计和分析核心
- 批准号:
10608063 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别:
Experimental Integration, Design and Analysis Core
实验集成、设计和分析核心
- 批准号:
10380075 - 财政年份:2021
- 资助金额:
$ 16万 - 项目类别: