Meshfree methods for the numerical solution of partial differential equations from fluid dynamics

流体动力学偏微分方程数值求解的无网格方法

基本信息

项目摘要

Meshfree methods represent a modern alternative to classsical mesh-based methods for discretising partial differential equations. In contrast to these classical methods, they do not require the time-consuming step of building a computational mesh.In this project, a novel, high-order meshfree method for discretising partial differential equations will be developed, analysed and implemented. Special emphasis will be on classical differential equations from fluid dynamics. The proposed method is unique in its approach. It employs radial basis functions and differs significantly from classical schemes in the following ways. For incompressible fluids, it is based upon analytically divergence free approximation spaces and creates simultanous approximations for the velocity and pressure such that neither a splitting technique nor an inf-sup condition, not even an additional computation, are required. Moreover, it does not require any kind of numericalintegration and is flexible in handling time-dependent changes of theunderlying geometry.Besides a rigorous mathematical analysis, it will be thoroughly analysed whether and in which way a reduction in computational complexity can be achieved. Furthermore, it is intended to show that this discretisation method provides a new, simple approach and a significant improvement for analysing and extracting flow relevant features. Though the main focus is on applications from fluid dynamics, the proposed method can, after some modifications, be applied to other areas such as the modelling of option prices in finance and the modelling of cancer growth in the life sciences.The new main topics of this continuation application are the extension of the mathematical error and stability analysis to general boundary data, the development of a corresponding theory for conditionally positive definite kernels and the development, the implementation and the analysis of efficient numerical algorithms.
无网格方法是一种现代的替代经典的基于网格的方法离散偏微分方程。与这些经典的方法相比,它们不需要耗时的建立计算网格的步骤。在这个项目中,一个新的,高阶无网格方法离散偏微分方程将被开发,分析和实施。特别强调将在经典的流体动力学微分方程。所提出的方法在其方法上是独特的。它采用径向基函数,并在以下方面显着不同于经典计划。对于不可压缩流体,它基于解析发散自由近似空间,并创建速度和压力的连续近似,这样既不需要分裂技术也不需要inf-sup条件,甚至不需要额外的计算。此外,它不需要任何形式的数值积分,并灵活地处理与时间有关的变化的基础几何。除了严格的数学分析,它将彻底分析是否和以何种方式可以减少计算复杂性可以实现。此外,它的目的是表明,这种离散化方法提供了一种新的,简单的方法和一个显着的改进,用于分析和提取流相关的功能。虽然主要的重点是从流体力学的应用,所提出的方法,经过一些修改,可以适用于其他领域,如金融期权价格的建模和生命科学中的癌症生长的建模。新的主要课题,这一延续应用的数学误差和稳定性分析的一般边界数据的扩展,条件正定核的相应理论的发展以及有效数值算法的发展、实现和分析。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A High-Order, Analytically Divergence-Free Approximation Method for the Time-Dependent Stokes Problem
  • DOI:
    10.1137/151006196
  • 发表时间:
    2016-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. Keim;H. Wendland
  • 通讯作者:
    C. Keim;H. Wendland
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Holger Wendland其他文献

Professor Dr. Holger Wendland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Holger Wendland', 18)}}的其他基金

Convergence of particle methods, particularly SPH
粒子方法的收敛,特别是 SPH
  • 批准号:
    262166066
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multiscale Approximation Methods for Scattered Scalar- and Manifold-Valued Data
分散标量和流形值数据的多尺度逼近方法
  • 批准号:
    514588180
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Conference: Mathematical models and numerical methods for multiphysics problems
会议:多物理问题的数学模型和数值方法
  • 批准号:
    2347546
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Topological-based numerical methods for real-world problems
针对现实世界问题的基于拓扑的数值方法
  • 批准号:
    2882199
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
  • 批准号:
    23K17655
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
BCC for Prostate Cancer: Discovery and Translation of Biomarkers for Clinical Unmet Needs
前列腺癌的 BCC:发现和转化生物标志物以满足临床未满足的需求
  • 批准号:
    10701245
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a panel of multiplex biomarkers for the early detection of pancreatic ductal adenocarcinoma and high-risk lesions
开发一组多重生物标志物,用于早期检测胰腺导管腺癌和高危病变
  • 批准号:
    10642409
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Numerical Analysis for Meshfree and Particle Methods via Nonlocal Models
职业:通过非局部模型进行无网格和粒子方法的数值分析
  • 批准号:
    2240180
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Robust and Efficient Numerical Methods for Wave Equations in the Time Domain: Nonlinear and Multiscale Problems
时域波动方程的鲁棒高效数值方法:非线性和多尺度问题
  • 批准号:
    2309687
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了