Molecular Understanding of Ion Intercalation Processes in Rechargeable Aluminum-Carbon Batteries
可充电铝碳电池中离子嵌入过程的分子理解
基本信息
- 批准号:1706926
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the great challenges facing the Nation is to develop novel technologies that transform how renewable sourced energy can be sustainably and economically stored on a massive scale. Rechargeable batteries, which store energy electrochemically, have revolutionized consumer electronics. For greater scale applications including electric vehicles and grid-scale storage of renewable energy sources, substantial improvements are required for the performance properties of energy density, lifetime, and cost. Aluminum metal is a potentially ideal battery electrode material because it is earth abundant, non-flammable, non-toxic, low cost, and can store more charge per unit volume than other common metals. Recently, research on rechargeable batteries composed of aluminum metal and carbon electrodes has been published. However, mechanistic aspects of how the battery stores charge within the carbon electrodes are poorly understood. This project seeks to elucidate the fundamental processes underpinning how the carbon electrodes store and release ions and energy, particularly at the molecular level. These scientific insights will be used to design and synthesize novel carbon electrodes that will result in rechargeable aluminum-carbon batteries with improved energy storage properties. For educational outreach, high school and undergraduate students will collaborate with university researchers and receive advanced training on electrochemical systems. This research will be disseminated to a broader audience by high school demonstrations and on the City University of New York (CUNY) TV station, which is publically broadcast across New York City. The overarching objectives of this project are to understand ion intercalation processes in rechargeable aluminum-carbon batteries at the molecular level, and to use these insights to design new carbon electrode structures with improved energy storage properties. Aluminum-graphite batteries using ionic liquid electrolytes will first be studied to reveal insights into the chemical and structural changes that occur within the battery electrolyte and electrode materials as a function of state-of-charge and cycle number. The molecular-level environments, ion speciation and dynamics, and structures of intercalated carbon electrodes will be characterized by multi-dimensional nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD), electron microscopy, and other techniques. These properties will be correlated with bulk electrochemical properties and device performance, yielding new multi-scale understanding. Alternative non-corrosive electrolyte systems will be investigated, which will enable studies of how mixtures of different ionic and solvent species participate and/or affect the intercalation processes. Lastly, novel carbon electrodes based on graphene and carbon nanotubes will be synthesized and tested in aluminum-carbon batteries. In particular, the role of local carbon structures and the effects of disorder on bulk electrochemical properties will be understood and controlled to yield improved electrode materials. Answers to the fundamental scientific questions posed in this work will enable researchers to better understand whether aluminum-carbon batteries could become practical energy storage systems.
国家面临的最大挑战之一是开发新技术,改变可再生能源如何可持续和经济地大规模储存。以电化学方式储存能量的可充电电池已经彻底改变了消费电子产品。对于更大规模的应用,包括电动汽车和可再生能源的电网规模存储,需要对能量密度、寿命和成本的性能特性进行实质性改进。铝金属是一种潜在的理想电池电极材料,因为它是地球丰富,不易燃,无毒,成本低,并且可以存储更多的电荷每单位体积比其他常见的金属。最近,已经公开了对由铝金属和碳电极构成的可再充电电池的研究。然而,电池如何在碳电极内储存电荷的机制方面知之甚少。该项目旨在阐明碳电极如何储存和释放离子和能量的基本过程,特别是在分子水平上。这些科学见解将用于设计和合成新型碳电极,从而产生具有改进的储能性能的可充电铝碳电池。对于教育推广,高中和本科生将与大学研究人员合作,并接受电化学系统的高级培训。这项研究将通过高中的示范和纽约城市大学电视台向更广泛的受众传播,该电视台在整个纽约市播出。该项目的总体目标是在分子水平上了解可充电铝碳电池中的离子嵌入过程,并利用这些见解设计具有改善储能性能的新碳电极结构。首先将研究使用离子液体电解质的铝石墨电池,以揭示电池电解质和电极材料中发生的化学和结构变化,这些变化是充电状态和循环次数的函数。分子水平的环境,离子形态和动力学,以及插层碳电极的结构将通过多维核磁共振(NMR)光谱,X射线衍射(XRD),电子显微镜和其他技术来表征。这些特性将与体电化学特性和器件性能相关,从而产生新的多尺度理解。替代的非腐蚀性电解质系统将进行调查,这将使不同的离子和溶剂物种的混合物如何参与和/或影响插层过程的研究。最后,将合成基于石墨烯和碳纳米管的新型碳电极,并在铝碳电池中进行测试。特别地,局部碳结构的作用和无序对体电化学性质的影响将被理解和控制,以产生改进的电极材料。这项工作中提出的基本科学问题的答案将使研究人员能够更好地了解铝碳电池是否可以成为实用的储能系统。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Graphite Structure and Ion Transport on the Electrochemical Properties of Rechargeable Aluminum–Graphite Batteries
- DOI:10.1021/acsaem.9b01184
- 发表时间:2019-10
- 期刊:
- 影响因子:6.4
- 作者:Jeffrey H. Xu;D. Turney;A. Jadhav;R. Messinger
- 通讯作者:Jeffrey H. Xu;D. Turney;A. Jadhav;R. Messinger
Molecular-level environments of intercalated chloroaluminate anions in rechargeable aluminum-graphite batteries revealed by solid-state NMR spectroscopy
- DOI:10.1039/d0ta02611e
- 发表时间:2020-08
- 期刊:
- 影响因子:0
- 作者:Jeffrey H. Xu;A. Jadhav;D. Turney;R. Messinger
- 通讯作者:Jeffrey H. Xu;A. Jadhav;D. Turney;R. Messinger
Tunable Pseudocapacitive Intercalation of Chloroaluminate Anions into Graphite Electrodes for Rechargeable Aluminum Batteries
- DOI:10.1149/1945-7111/ac0648
- 发表时间:2021-06
- 期刊:
- 影响因子:3.9
- 作者:Jeffrey H. Xu;T. Schoetz;Joseph R. McManus;V. Subramanian;Peter W. Fields;R. Messinger
- 通讯作者:Jeffrey H. Xu;T. Schoetz;Joseph R. McManus;V. Subramanian;Peter W. Fields;R. Messinger
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Messinger其他文献
Robert Messinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Messinger', 18)}}的其他基金
CAREER: Design and Understanding up from the Atomic Scale of Multivalent Intercalation Electrodes for High-Energy-Density Rechargeable Batteries
职业:从原子尺度设计和理解高能量密度可充电电池的多价插层电极
- 批准号:
1847552 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding and Controlling Structure in Metal Ion-Linked Multilayer Upconversion Solar Cells
了解和控制金属离子连接多层上转换太阳能电池的结构
- 批准号:
2327754 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Understanding the Key to Unlocking Fast Li-ion Conduction in Fluoride-based Solid Electrolytes
了解氟化物固体电解质中实现快速锂离子传导的关键
- 批准号:
2329953 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2427215 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325463 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Understanding polymodal gating of a lysosomal ion channel
了解溶酶体离子通道的多模式门控
- 批准号:
BB/W01551X/1 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Research Grant
CAREER: Cathode Materials for Aluminum Batteries: Understanding Factors Influencing Al Ion Intercalation into MXenes
职业:铝电池阴极材料:了解影响 Al 离子嵌入 MXene 的因素
- 批准号:
2403874 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Understanding the Structural Transformations of Aluminum Foil Anodes during Electrochemical De(alloying) for Sustainable Lithium-ion Batteries
了解可持续锂离子电池电化学脱(合金)过程中铝箔阳极的结构转变
- 批准号:
2321486 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Understanding Spontaneous Internal Short Circuit Caused Thermal Runaway of Lithium-ion Batteries through In Situ Diagnosis
职业:通过原位诊断了解自发内部短路引起的锂离子电池热失控
- 批准号:
2240029 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
CAS-Climate: Understanding the fundamental redox chemistry and transport of chloroaluminate anions in ionic liquid electrolytes to develop earth-abundant aluminum ion battery
CAS-Climate:了解离子液体电解质中氯铝酸盐阴离子的基本氧化还原化学和传输,以开发地球上丰富的铝离子电池
- 批准号:
2208744 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant