CAREER: Understanding Spontaneous Internal Short Circuit Caused Thermal Runaway of Lithium-ion Batteries through In Situ Diagnosis
职业:通过原位诊断了解自发内部短路引起的锂离子电池热失控
基本信息
- 批准号:2240029
- 负责人:
- 金额:$ 59.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2028-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electric vehicles (EVs) are expected to account for more than half of passenger cars sold in the U.S. by 2030. However, costly battery fires have become a critical challenge for the burgeoning EV industry. What makes this challenge most concerning is that, in some cases, the batteries suddenly caught fire when the vehicles were not in use. These fires have been attributed to the internal short circuit of lithium-ion batteries, which is also a major cause of battery fires involving many other applications such as smart phones, laptops, and grid-scale energy storage. This CAREER research seeks to understand how an internal short circuit forms, evolves, and suddenly causes a thermal runaway event (and potentially a fire) in lithium-ion batteries. Insights from the research will advance the understanding of energetic failures of electrochemical energy systems and the development of safer batteries for EVs and many other applications. The integrated educational tasks include organizing a series of seminars on state-of-the-art energy storage technologies, creating an energy-storage club, developing a new course on battery basics, and mentoring undergraduate students in lithium-battery research and senior design projects. These tasks will be performed to train undergraduate students to meet the growing demand of workforce development for the booming EV industry in the Southeastern U.S. The integrated outreach activities include organizing hands-on workshops in local high schools with majority low-income and minority students focusing on battery basics and opportunities of battery-related emerging industries, creating and teaching a module on batteries in the BEST (Be an Engineering STudent) Experience summer camp program at the University of Alabama in Huntsville, and showcasing energy storage research at local STEM events. These activities will attract local K-12 students to STEM fields, preparing them for opportunities in the EV industry and other emerging battery-enabled industries.This research seeks to understand how an internal short circuit (ISC) forms, evolves, and triggers thermal runaway of lithium-ion battery cells through in situ diagnosis. The central hypothesis is that the threshold for thermal runaway due to ISC is a critical energy barrier, not a critical temperature. To test this hypothesis, the project will achieve three objectives: 1. determine the threshold of thermal runaway caused by ISC through in situ measurement of critical parameters, including ISC current, temperature, and heat generation; 2. understand the formation and evolution of ISC through in situ imaging and electrochemical characterization; and 3. understand the effects of current-guiding and self-cooling on ISC behaviors and risk of thermal runaway. The first objective will bridge the gap between conventional ex situ experiments and numerical modeling to identify and determine a reliable threshold of thermal runaway caused by ISC. The second objective will reveal the mechanisms and behaviors of ISC to advance the understanding of this highly localized and transient thermal-electrochemical-coupled phenomenon. The third objective will confirm the threshold energy and provide a basis for industrial engineers to develop future thermal runaway protection strategies and techniques. Together, the research will provide insight into ISC-caused thermal runaway of lithium-ion batteries and help ensure the safety of batteries that are critical to the success of the exponentially growing EV industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
到 2030 年,电动汽车 (EV) 预计将占美国乘用车销量的一半以上。然而,代价高昂的电池火灾已成为蓬勃发展的电动汽车行业面临的严峻挑战。这一挑战最令人担忧的是,在某些情况下,电池在车辆闲置时突然起火。这些火灾被归咎于锂离子电池的内部短路,这也是涉及智能手机、笔记本电脑和电网规模储能等许多其他应用的电池火灾的主要原因。这项职业研究旨在了解锂离子电池内部短路如何形成、演变以及突然导致热失控事件(并可能引发火灾)。该研究的见解将增进对电化学能源系统能量故障的理解,并为电动汽车和许多其他应用开发更安全的电池。综合教育任务包括组织一系列关于最先进储能技术的研讨会、创建储能俱乐部、开发电池基础知识新课程以及指导本科生进行锂电池研究和高级设计项目。这些任务将用于培训本科生,以满足美国东南部蓬勃发展的电动汽车行业日益增长的劳动力发展需求。综合外展活动包括在当地高中组织实践研讨会,主要关注电池基础知识和电池相关新兴行业的机会,其中大多数是低收入和少数族裔学生,在阿拉巴马大学的 BEST(成为工程学生)体验夏令营计划中创建和教授电池模块。 亨茨维尔,并在当地的 STEM 活动中展示储能研究。这些活动将吸引当地 K-12 学生进入 STEM 领域,为他们在电动汽车行业和其他新兴电池行业的机会做好准备。这项研究旨在通过原位诊断了解内部短路 (ISC) 如何形成、演变并触发锂离子电池的热失控。中心假设是 ISC 引起的热失控阈值是临界能垒,而不是临界温度。为了检验这一假设,该项目将实现三个目标: 1. 通过原位测量 ISC 电流、温度和发热等关键参数,确定 ISC 引起的热失控阈值; 2. 通过原位成像和电化学表征了解ISC的形成和演化; 3.了解电流引导和自冷却对ISC行为和热失控风险的影响。第一个目标将弥合传统异位实验和数值模型之间的差距,以识别和确定 ISC 引起的热失控的可靠阈值。第二个目标将揭示 ISC 的机制和行为,以增进对这种高度局部化和瞬态热电化学耦合现象的理解。第三个目标将确定阈值能量,并为工业工程师开发未来热失控保护策略和技术提供基础。这项研究将共同深入了解 ISC 引起的锂离子电池热失控,并有助于确保电池的安全性,这对于呈指数增长的电动汽车行业的成功至关重要。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A novel method for simultaneous triggering and in situ sensing of internal short circuit in lithium-ion cells
一种同时触发和原位感测锂离子电池内部短路的新方法
- DOI:10.1039/d3ya00311f
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Long, Mary K.;Liu, Siyi;Zhang, Guangsheng
- 通讯作者:Zhang, Guangsheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guangsheng Zhang其他文献
Adsorption-heat transfer mechanisms of drilling fluid with ice layer and its effects on wellbore stability in Antarctic region
- DOI:
10.1007/s11431-025-2967-1 - 发表时间:
2025-07-17 - 期刊:
- 影响因子:4.900
- 作者:
Jingping Liu;Haijiang Yi;Kaihe Lv;Xuejing Deng;Jinsheng Sun;Zhe Xu;Ning Huang;Guangsheng Zhang;Yuanwei Sun;Taifeng Zhang;Han Yan - 通讯作者:
Han Yan
General Obstacle Detection by Ground Shape Invariant Features with a Fisheye Camera
使用鱼眼相机通过地面形状不变特征进行一般障碍物检测
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Hongfei Yu;Guangsheng Zhang;Xiwang Guo;H. Tian - 通讯作者:
H. Tian
Holocene fire in relation to environmental change and human activity reconstructed from sedimentary charcoal of Chaohu Lake, East China
利用中国东部巢湖沉积木炭重建全新世火灾与环境变化和人类活动的关系
- DOI:
10.1016/j.quaint.2018.11.035 - 发表时间:
2019-02 - 期刊:
- 影响因子:2.2
- 作者:
Li Wu;Linying Li;Hui Zhou;Xinyuan Wang;Guangsheng Zhang - 通讯作者:
Guangsheng Zhang
Challenges and Innovations of Lithium-Ion Battery Thermal Management Under Extreme Conditions: a Review
极端条件下锂离子电池热管理的挑战与创新:综述
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Siyi Liu;Guangsheng Zhang;Chaoyang Wang - 通讯作者:
Chaoyang Wang
Optimal decision-making and coordination of the shipping logistics service supply chain cooperation mode under the carbon quota and trading mechanism
- DOI:
10.1016/j.ocecoaman.2024.107240 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Guangsheng Zhang;Junqian Xu;Zhaomin Zhang;Weijie Chen - 通讯作者:
Weijie Chen
Guangsheng Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Navigating Sustainability: Understanding Environm ent,Social and Governanc e Challenges and Solution s for Chinese Enterprises
in Pakistan's CPEC Framew
ork
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Understanding structural evolution of galaxies with machine learning
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Understanding the structural mechanism of spontaneous ubiquitin cargo clustering on the cell plasma membrane
了解细胞质膜上自发泛素货物聚集的结构机制
- 批准号:
10730734 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Understanding the appearance mechanism of ferroelectric liquid crystals showing spontaneous polarization in the director and developing their applications.
了解铁电液晶在指向矢中表现出自发极化的出现机制并开发其应用。
- 批准号:
23H00303 - 财政年份:2023
- 资助金额:
$ 59.82万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Understanding, characterization, modeling, and simulation of the spontaneous failure of tailings dams
尾矿坝自发破坏的理解、表征、建模和模拟
- 批准号:
RGPIN-2020-06049 - 财政年份:2022
- 资助金额:
$ 59.82万 - 项目类别:
Discovery Grants Program - Individual
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
- 批准号:
RGPIN-2021-02948 - 财政年份:2022
- 资助金额:
$ 59.82万 - 项目类别:
Discovery Grants Program - Individual
Understanding spontaneous mitotic crossover by single-cell multi-omics
通过单细胞多组学了解自发有丝分裂交叉
- 批准号:
10273068 - 财政年份:2021
- 资助金额:
$ 59.82万 - 项目类别:
Understanding, characterization, modeling, and simulation of the spontaneous failure of tailings dams
尾矿坝自发破坏的理解、表征、建模和模拟
- 批准号:
RGPIN-2020-06049 - 财政年份:2021
- 资助金额:
$ 59.82万 - 项目类别:
Discovery Grants Program - Individual
Understanding spontaneous mitotic crossover by single-cell multi-omics
通过单细胞多组学了解自发有丝分裂交叉
- 批准号:
10621289 - 财政年份:2021
- 资助金额:
$ 59.82万 - 项目类别:
Understanding phenotype and mechanisms of spontaneous preterm birth in sub-Saharan Africa (PRECISE-SPTB)
了解撒哈拉以南非洲地区自发性早产的表型和机制 (PRECISE-SPTB)
- 批准号:
MR/T03890X/1 - 财政年份:2021
- 资助金额:
$ 59.82万 - 项目类别:
Research Grant
Understanding spontaneous mitotic crossover by single-cell multi-omics
通过单细胞多组学了解自发有丝分裂交叉
- 批准号:
10455042 - 财政年份:2021
- 资助金额:
$ 59.82万 - 项目类别:
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
- 批准号:
RGPIN-2021-02948 - 财政年份:2021
- 资助金额:
$ 59.82万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




