RUI: Quantum Turbulence in Atomtronic Systems

RUI:原子电子系统中的量子湍流

基本信息

项目摘要

An "atom circuit" is a thin sheet of atomic gas that has been confined to two-dimensions by squeezing it with laser light and cooling it to nearly the absolute zero of temperature. The low temperature of such confined gases enhances the display of the wave-like quantum mechanical nature of the constituent atoms so that they form a state called a Bose-Einstein condensate (BEC). A horizontal thin sheet of gas in the BEC state can be molded by the confining laser light into arbitrary closed-loop shapes analogous to closed electric circuits. The gas can then be stirred by lasers so that it flows around the closed loop like the electrons in an electric circuit except that the particles are neutral atoms. "Atomtronics" is accordingly an analogue of electronics in which entire atoms flow through a circuit. Atomtronic systems are of interest because they could potentially be used as extremely sensitive quantum sensors of rotations, of magnetic fields, and of gravitational fields. This research program will study how the quantum turbulence that often appears when such gases are stirred can be harnessed to enhance the operation of these quantum sensor devices. Methods for readout of the important characteristics of these circuits (such as analogs of ammeters and voltmeters in electric circuits) will be developed. This work, performed with undergraduate students at an RUI institution, is conducted in close collaboration with experimental researchers at JQI/NIST.The collaboration will study the behavior of ultracold samples of atomic gases strongly confined in a horizontal plane and subjected to arbitrary space-dependent and time-dependent potentials produced by laser light. The research will take advantage of recent experimental breakthroughs in the optical manipulation of ultracold gases in designing new atom circuit potentials. In this work a variety of different atom-circuit designs will be investigated. Each atom circuit to be studied will be assumed to be completely filled by the atoms condensed into a BEC. Methods of producing condensate flow, especially smooth flow, will be studied. The operation of each atom circuit will be simulated both at zero and non-zero temperature. The flow present in atom circuits often involves the appearance of numerous topological excitations such as vortices (i.e., miniature tornadoes in the gas) and solitons (solitary waves that move without degrading) and thus exhibits "quantum turbulence". One focus of this research will be to detect the presence of all such excitations and then follow and analyze their behavior. These studies will enable the development of simple models of vortex and solitonic behavior in the atomtronic systems. Such models will be useful in designing optimally performing atom circuits for applications. This research program will enable at least two undergraduate physics majors to gain state-of-the-art research experience in the area of ultracold atom theory. The project will enhance the infrastructure for research and education by enhancing an established collaboration among an undergraduate institution (GA Southern), a national laboratory (NIST), and a major research university (University of Maryland). Results of this research will be broadly disseminated to enhance scientific and technological understanding by developing virtual reality (VR) videos that describe the physics of BECs at a level that is accessible to the lay public. These VR videos will be suitable for display on VR headsets such as the Oculus Rift and Google Cardboard. Finally, an understanding of the role of quantum turbulence in atom-circuits will enable the design of a new generation of practical devices that will find applications in metrology and navigation. This knowledge will also add to the understanding of the fundamental properties of quantum matter.
“原子电路”是一层薄薄的原子气体,通过激光压缩并冷却到接近绝对零度的温度,将其限制在二维空间。这种受限气体的低温增强了组成原子的波动量子力学性质的显示,因此它们形成了一种称为玻色-爱因斯坦凝聚体(BEC)的状态。在BEC状态下的水平薄气体片可以通过限制激光被塑造成类似于闭合电路的任意闭环形状。然后,气体可以被激光搅动,这样它就像电路中的电子一样围绕闭环流动,只是粒子是中性原子。因此,“原子电子学”是电子学的一种模拟,其中整个原子流过电路。原子电子系统之所以令人感兴趣,是因为它们有可能用作极其敏感的旋转、磁场和引力场量子传感器。该研究计划将研究如何利用这些气体搅拌时经常出现的量子湍流来增强这些量子传感器设备的操作。将开发读出这些电路(如电路中电流表和电压表的模拟)的重要特性的方法。这项工作是与JQI/NIST的实验研究人员密切合作,与RUI机构的本科生一起完成的。该合作将研究强限制在水平面内的原子气体的超冷样品的行为,并受到激光产生的任意空间相关和时间相关势的影响。这项研究将利用最近在超冷气体光学操纵方面的实验突破,设计新的原子电路势。在这项工作中,各种不同的原子电路设计将进行调查。每个待研究的原子电路将被假设为完全由凝聚成BEC的原子填充。将研究产生凝析油流,特别是平稳流的方法。每个原子电路的操作将在零和非零温度下进行模拟。存在于原子电路中的流动通常涉及许多拓扑激发的出现,例如涡旋(即,气体中的微型龙卷风)和孤立子(移动而不退化的孤立波),因此表现出“量子湍流”。这项研究的一个重点将是检测所有这些激励的存在,然后跟踪和分析他们的行为。这些研究将使原子电子系统中的涡旋和孤子行为的简单模型的发展成为可能。这种模型将是有用的,在设计最佳性能的原子电路的应用。该研究计划将使至少两个本科物理专业的学生在超冷原子理论领域获得最先进的研究经验。该项目将通过加强本科院校(GA Southern),国家实验室(NIST)和主要研究型大学(马里兰州大学)之间的合作来加强研究和教育的基础设施。这项研究的结果将被广泛传播,以提高科学和技术的理解,通过开发虚拟现实(VR)视频,描述BEC的物理学在一个水平,可供公众访问。这些VR视频将适合在Oculus Rift和Google Cardboard等VR头显上显示。最后,理解量子湍流在原子电路中的作用将使新一代实用设备的设计成为可能,这些设备将在计量和导航中得到应用。这些知识也将有助于理解量子物质的基本性质。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Induced density correlations in a sonic black hole condensate
声速黑洞凝聚体中的诱导密度相关性
  • DOI:
    10.21468/scipostphys.3.3.022
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Wang, Yi-Hsieh;Edwards, Mark;Clark, Charles;Jacobson, Ted
  • 通讯作者:
    Jacobson, Ted
Nonlinear waves in an experimentally motivated ring-shaped Bose-Einstein-condensate setup
实验激发的环形玻色-爱因斯坦凝聚装置中的非线性波
  • DOI:
    10.1103/physreva.99.053619
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Haberichter, M.;Kevrekidis, P. G.;Carretero-González, R.;Edwards, M.
  • 通讯作者:
    Edwards, M.
Thermal stability of a quantum rotation sensor
量子旋转传感器的热稳定性
  • DOI:
    10.1103/physreva.104.033323
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Arabahmadi, Ehsan;Schumayer, Daniel;Edwards, Mark;Eller, Ben;Hutchinson, David A.
  • 通讯作者:
    Hutchinson, David A.
Persistent current oscillations in a double-ring quantum gas
双环量子气体中的持续电流振荡
  • DOI:
    10.1103/physrevresearch.4.043171
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Bland, T.;Yatsuta, I. V.;Edwards, M.;Nikolaieva, Y. O.;Oliinyk, A. O.;Yakimenko, A. I.;Proukakis, N. P.
  • 通讯作者:
    Proukakis, N. P.
Producing flow in racetrack atom circuits by stirring
  • DOI:
    10.1103/physreva.102.063324
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Benjamin Eller;Olatunde Oladehin;Daniel Fogarty;C. Heller;C. Clark;M. Edwards
  • 通讯作者:
    Benjamin Eller;Olatunde Oladehin;Daniel Fogarty;C. Heller;C. Clark;M. Edwards
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Edwards其他文献

Doing things differently: advantages and disadvantages of Web questionnaires.
以不同的方式做事:网络调查问卷的优点和缺点。
  • DOI:
    10.7748/nr2008.07.15.4.15.c6658
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1.2
  • 作者:
    Steve Jones;F. Murphy;Mark Edwards;Janet James
  • 通讯作者:
    Janet James
Temporal synchrony is an effective cue for grouping and segmentation in the absence of form cues.
时间同步是在缺乏形式线索的情况下进行分组和分割的有效线索。
  • DOI:
    10.1167/16.11.23
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Reuben Rideaux;D. Badcock;A. Johnston;Mark Edwards
  • 通讯作者:
    Mark Edwards
Common-fate motion processing: Interaction of the On and Off pathways
共命运运动处理:开路和关路的相互作用
  • DOI:
    10.1016/j.visres.2008.11.010
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Mark Edwards
  • 通讯作者:
    Mark Edwards
Significant improvement to the catalytic properties of aspartate aminotransferase: role of hydrophobic and charged residues in the substrate binding pocket.
天冬氨酸转氨酶催化特性的显着改善:底物结合袋中疏水性和带电残基的作用。
  • DOI:
    10.1021/bi00167a012
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    E. Koehler;M. Seville;J. Jaeger;I. Fotheringham;Michael Hunter;Mark Edwards;J. Jansonius;K. Kirschner
  • 通讯作者:
    K. Kirschner
How many motion signals can be simultaneously perceived?
可以同时感知多少个运动信号?
  • DOI:
    10.1016/j.visres.2012.10.004
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Mark Edwards;Reuben Rideaux
  • 通讯作者:
    Reuben Rideaux

Mark Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Edwards', 18)}}的其他基金

RUI: Quantum Thermodynamics of Atomtronic Systems
RUI:原子电子系统的量子热力学
  • 批准号:
    2207476
  • 财政年份:
    2022
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
NSF Support of Student Travel Grants to APS-DAMOP; Sacramento, CA
NSF 向 APS-DAMOP 提供学生旅费资助;
  • 批准号:
    1738914
  • 财政年份:
    2017
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
A Unified Mechanism for Functional Neurological Symptoms
功能性神经症状的统一机制
  • 批准号:
    MR/M02363X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
RUI Collaboration: Designing Ultra-cold Atom Circuits in Quasi-2D Confinement
RUI 合作:在准二维限制中设计超冷原子电路
  • 批准号:
    1413768
  • 财政年份:
    2014
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
RUI Collaboration: Quantum-Information-Science-Inspired Ultracold Atom Interferometer Design
RUI 合作:受量子信息科学启发的超冷原子干涉仪设计
  • 批准号:
    1068761
  • 财政年份:
    2011
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
RUI Collaboration: Modeling Quantum Logic Operations with Ultra-cold Atoms in Optical Lattices
RUI 协作:利用光学晶格中的超冷原子模拟量子逻辑运算
  • 批准号:
    0758111
  • 财政年份:
    2008
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
RUI: Modeling Ultra-cold Atoms in Optical Lattices as Analogs of Condensed-Matter Systems
RUI:模拟光学晶格中的超冷原子作为凝聚态系统的模拟
  • 批准号:
    0653359
  • 财政年份:
    2007
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
RUI Collaborative Research: Applications of Gaseous Bose-Einstein Condensates in Quantum-Computational Devices
RUI合作研究:气态玻色-爱因斯坦凝聚态在量子计算设备中的应用
  • 批准号:
    0354969
  • 财政年份:
    2004
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Optical Manipulation of Bose-Einstein Condensates
玻色-爱因斯坦凝聚态的光学操控
  • 批准号:
    0100634
  • 财政年份:
    2001
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
RUI Collaboration: Quantitative Modeling of Cold-Atom Bose-Einstein Condensates and Atom Lasers
RUI 合作:冷原子玻色-爱因斯坦凝聚体和原子激光器的定量建模
  • 批准号:
    9802547
  • 财政年份:
    1998
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Pioneering the frontier of quantum hydrodynamics and turbulence
开拓量子流体动力学和湍流的前沿
  • 批准号:
    23K03305
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Creation and evolution of quantum turbulence in novel geometries
新颖几何形状中量子湍流的产生和演化
  • 批准号:
    EP/X004597/1
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Research Grant
Compressible Turbulence from Quantum to Classical
从量子到经典的可压缩湍流
  • 批准号:
    2309322
  • 财政年份:
    2023
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    2305523
  • 财政年份:
    2022
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
Nonlinear wave phenomena excited on vortex lines in quantum turbulence
量子湍流中涡线激发的非线性波现象
  • 批准号:
    22K03518
  • 财政年份:
    2022
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Visualization of quantum turbulence and vortex dynamics in superfluid helium
超流氦中量子湍流和涡旋动力学的可视化
  • 批准号:
    2489090
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Studentship
CAREER: Quantum mechanics far from equilibrium: Matter-wave turbulence
职业:远离平衡的量子力学:物质波湍流
  • 批准号:
    1945324
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Quantum Simulation of Turbulence with Cold Atoms
冷原子湍流的量子模拟
  • 批准号:
    2012190
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Continuing Grant
Studies of quantum hydrodynamics and quantum turbulence
量子流体动力学和量子湍流研究
  • 批准号:
    20H01855
  • 财政年份:
    2020
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Questions in Wave Turbulence and Quantum Kinetic Theories
波湍流和量子动力学理论中的问题
  • 批准号:
    1854453
  • 财政年份:
    2018
  • 资助金额:
    $ 16.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了