Quantum Simulation of Turbulence with Cold Atoms

冷原子湍流的量子模拟

基本信息

  • 批准号:
    2012190
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Quantum vortices - an analog of tornadoes - play a key role in the dynamics of neutron stars: the densest objects in the universe on the verge of becoming black holes. Surprisingly, quantum vortices can be studied on earth with ultracold-atom experiments, operating almost a billion times colder than outer space. These experiments can be adjusted to mimic many aspects of neutron stars, and this project will enable them to be used as analog quantum computers to simulate turbulence in nuclear astrophysics. By transcending current limitations of classical computers, this will rapidly accelerate the progress of science, targeting the 40-year old mystery of pulsar glitches. This program combines two of the NSF's Big Ideas, advancing quantum simulations (Quantum Leap) to maximize the return on detector investment (Windows on the Universe). Pulsar glitches might even be heard with the next round of gravitational wave observations at the NSF LIGO facility, informing nuclear physics by providing insight into their microscopic nature. In addition to advancing basic science, this project will explore quantum dynamics with potential applications to quantum devices, and develop accessible programming models to help students and researchers more effectively utilize national investment in high-performance computing (HPC) to advance the pace of scientific discovery. Finally, a superfluid explorer application will be developed to help the public and students appreciate quantum behavior, and better understand the science at the core of the next quantum revolution.This project will deliver computationally efficient models that accurately describe dynamic quantum effects, including negative-mass hydrodynamics from dispersion relationships engineered with spin-orbit coupled Bose-Einstein condensates. Ultracold atom experiments explore a rich set of phenomena that will be used validate our theoretical techniques, then these techniques will be used to drive the discovery of new phenomena. Extensions of this theory to nuclear physics will ultimately be used to model superfluid vortex dynamics in neutron stars with the goal of understanding pulsar glitches - sudden increases in the spinning of neutron stars even though they continually lose angular momentum. This project will advance a broad range of fields, including atomic physics, condensed matter, non-linear optics, nuclear theory, and nuclear astrophysics. The research will result in publicly available codes for solving problems in quantum dynamics, presented in intuitive and interactive notebooks with video tutorials demonstrating how to use high-level programming languages to drive high-performance computers. These tools will significantly improve the infrastructure for research and education, educating researchers to effectively utilize medium to large scale computing resources for the advancement of science. Through this project, both undergraduate and graduate students will be trained with the analytical and high-performance computational skills to succeed in their future pursuits in academia, at national laboratories, and in industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子涡旋--类似于龙卷风--在中子星的动力学中扮演着关键角色:中子星是宇宙中密度最大的物体,濒临成为黑洞。令人惊讶的是,量子涡旋可以在地球上用超冷原子实验来研究,其运行温度几乎是外层空间的10亿倍。这些实验可以进行调整,以模拟中子星的许多方面,该项目将使它们能够用作模拟量子计算机,以模拟核天体物理中的湍流。通过超越目前经典计算机的限制,这将迅速加快科学进步,瞄准脉冲星故障这一40年来的谜团。该计划结合了美国国家科学基金会的两个重大想法,即先进的量子模拟(Quantum Leap),以最大化探测器投资的回报(宇宙之窗)。在NSF LIGO设施的下一轮引力波观测中,甚至可能听到脉冲星故障,通过洞察其微观性质为核物理提供信息。除了推进基础科学,该项目还将探索量子动力学,将其潜在应用于量子设备,并开发可访问的编程模型,以帮助学生和研究人员更有效地利用国家在高性能计算(HPC)方面的投资,以加快科学发现的步伐。最后,将开发一个超流体探测器应用程序,帮助公众和学生欣赏量子行为,并更好地理解下一次量子革命的核心科学。该项目将提供计算高效的模型,准确描述动态量子效应,包括由自旋-轨道耦合玻色-爱因斯坦凝聚体设计的色散关系产生的负质量流体力学。超冷原子实验探索了一系列丰富的现象,这些现象将被用来验证我们的理论技术,然后这些技术将被用来驱动新现象的发现。将这一理论扩展到核物理,最终将被用于对中子星中的超流涡旋动力学进行建模,目的是了解脉冲星故障-中子星在旋转过程中突然增加,尽管它们不断失去角动量。该项目将推进广泛的领域,包括原子物理、凝聚态物质、非线性光学、核理论和核天体物理。这项研究将产生用于解决量子动力学问题的公开可用的代码,这些代码以直观和互动的笔记本呈现,并配有视频教程,演示如何使用高级编程语言来驱动高性能计算机。这些工具将显著改善研究和教育的基础设施,教育研究人员有效地利用中到大规模的计算资源来促进科学进步。通过这个项目,本科生和研究生都将接受分析和高性能计算技能的培训,以便在他们未来在学术界、国家实验室和工业领域的追求中取得成功。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting entrainment in Fermi-Bose mixtures
检测费米-玻色混合物中的夹带
  • DOI:
    10.1103/physreva.105.063315
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Hossain, Khalid;Gupta, Subhadeep;Forbes, Michael McNeil
  • 通讯作者:
    Forbes, Michael McNeil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Forbes其他文献

Benders Decomposition with Delayed Disaggregation for the Active Passive Vehicle Routing Problem
主动被动车辆路径问题的延迟分解 Benders 分解
The Value of Drilling—A Chance-Constrained Optimization Approach
  • DOI:
    10.1007/s42461-024-01061-8
  • 发表时间:
    2024-08-22
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Rick Jeuken;Michael Forbes
  • 通讯作者:
    Michael Forbes
Pupil-sparing third nerve palsies and hemiataxia: Claude’s and reverse Claude’s syndrome
  • DOI:
    10.1016/j.jocn.2015.12.010
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    James R. Bateman;Pavan Murty;Michael Forbes;Kisha Young Collier;Danoushka Tememe;Octavio de Marchena;William J. Powers
  • 通讯作者:
    William J. Powers
Augmentation of CFTR maturation by S-nitrosoglutathione reductase 1 2
S-亚硝基谷胱甘肽还原酶促进 CFTR 成熟 1 2
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Zaman;Victoria Sawczak;Atiya Zaidi;Maya Butler;Deric Bennett;Paulina;Getsy;Maryam Zeinomar;Zivi Greenberg;Michael Forbes;Shagufta Rehman;Vinod;Jyothikumar;Kimberly Deronde;A. Sattar;Laura A. Smith;Deborah A. Corey;Adam;Straub;F. Sun;L. Palmer;A. Periasamy;S. Randell;T. Kelley;S. Lewis;B. Gaston
  • 通讯作者:
    B. Gaston
IN GOLF PUTTING Examining visual and attentional focus influences on golf putting performance using a dual-task paradigm
在高尔夫推杆中使用双任务范例检查视觉和注意力焦点对高尔夫推杆表现的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Forbes
  • 通讯作者:
    Michael Forbes

Michael Forbes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Forbes', 18)}}的其他基金

Compressible Turbulence from Quantum to Classical
从量子到经典的可压缩湍流
  • 批准号:
    2309322
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Algebraic and Geometric Complexity Theory
职业:代数和几何复杂性理论
  • 批准号:
    2047310
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CRII: AF: Linear-Algebraic Pseudorandomness
CRII:AF:线性代数伪随机性
  • 批准号:
    1755921
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
AF: Small: Challenges in Unconditional Pseudorandomness for Boolean Computation
AF:小:布尔计算无条件伪随机性的挑战
  • 批准号:
    1814788
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Quantum Dynamics with Cold Atoms
冷原子的量子动力学
  • 批准号:
    1707691
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Supernovae simulation with self-consistent turbulence model incorporated: Dynamics of proto-neutron stars
结合自洽湍流模型的超新星模拟:原中子星动力学
  • 批准号:
    23H01199
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
AGS-FIRP Track 2: Untangling the physics of aerosol activation, turbulence, and drizzle formation: Pi Chamber experiments and numerical simulation
AGS-FIRP 轨道 2:理清气溶胶活化、湍流和毛毛雨形成的物理原理:Pi 室实验和数值模拟
  • 批准号:
    2227012
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
  • 批准号:
    RGPIN-2022-04720
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2317176
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
  • 批准号:
    RGPIN-2022-05155
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2138414
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Magnetohydrodynamic simulation study on solar prominence turbulence associated with magnetic destabilization
与磁失稳相关的太阳日珥湍流的磁流体动力学模拟研究
  • 批准号:
    20K14519
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Asynchronous-coupled large-eddy simulation of Langmuir turbulence and the atmospheric surface layer
朗缪尔湍流和大气表层的异步耦合大涡模拟
  • 批准号:
    2054756
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了