Quantum Simulation of Turbulence with Cold Atoms

冷原子湍流的量子模拟

基本信息

  • 批准号:
    2012190
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Quantum vortices - an analog of tornadoes - play a key role in the dynamics of neutron stars: the densest objects in the universe on the verge of becoming black holes. Surprisingly, quantum vortices can be studied on earth with ultracold-atom experiments, operating almost a billion times colder than outer space. These experiments can be adjusted to mimic many aspects of neutron stars, and this project will enable them to be used as analog quantum computers to simulate turbulence in nuclear astrophysics. By transcending current limitations of classical computers, this will rapidly accelerate the progress of science, targeting the 40-year old mystery of pulsar glitches. This program combines two of the NSF's Big Ideas, advancing quantum simulations (Quantum Leap) to maximize the return on detector investment (Windows on the Universe). Pulsar glitches might even be heard with the next round of gravitational wave observations at the NSF LIGO facility, informing nuclear physics by providing insight into their microscopic nature. In addition to advancing basic science, this project will explore quantum dynamics with potential applications to quantum devices, and develop accessible programming models to help students and researchers more effectively utilize national investment in high-performance computing (HPC) to advance the pace of scientific discovery. Finally, a superfluid explorer application will be developed to help the public and students appreciate quantum behavior, and better understand the science at the core of the next quantum revolution.This project will deliver computationally efficient models that accurately describe dynamic quantum effects, including negative-mass hydrodynamics from dispersion relationships engineered with spin-orbit coupled Bose-Einstein condensates. Ultracold atom experiments explore a rich set of phenomena that will be used validate our theoretical techniques, then these techniques will be used to drive the discovery of new phenomena. Extensions of this theory to nuclear physics will ultimately be used to model superfluid vortex dynamics in neutron stars with the goal of understanding pulsar glitches - sudden increases in the spinning of neutron stars even though they continually lose angular momentum. This project will advance a broad range of fields, including atomic physics, condensed matter, non-linear optics, nuclear theory, and nuclear astrophysics. The research will result in publicly available codes for solving problems in quantum dynamics, presented in intuitive and interactive notebooks with video tutorials demonstrating how to use high-level programming languages to drive high-performance computers. These tools will significantly improve the infrastructure for research and education, educating researchers to effectively utilize medium to large scale computing resources for the advancement of science. Through this project, both undergraduate and graduate students will be trained with the analytical and high-performance computational skills to succeed in their future pursuits in academia, at national laboratories, and in industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子涡旋--类似于龙卷风--在中子星的动力学中起着关键作用:宇宙中的致密物体即将成为黑洞。令人惊讶的是,量子涡旋可以在地球上用超冷原子实验进行研究,其温度比外太空低近10亿倍。这些实验可以调整以模拟中子星的许多方面,该项目将使它们能够用作模拟量子计算机来模拟核天体物理学中的湍流。通过超越经典计算机的现有局限性,这将迅速加速科学的进步,目标是40岁的神秘脉冲星故障。该计划结合了NSF的两个大想法,推进量子模拟(量子飞跃),以最大限度地提高探测器投资的回报(宇宙视窗)。脉冲星故障甚至可能在NSF LIGO设施的下一轮引力波观测中听到,通过提供对它们微观性质的洞察来告知核物理。除了推进基础科学,该项目还将探索量子动力学在量子设备中的潜在应用,并开发可访问的编程模型,以帮助学生和研究人员更有效地利用国家对高性能计算(HPC)的投资,以推进科学发现的步伐。最后,我们将开发一个超流体探索者应用程序,帮助公众和学生欣赏量子行为,并更好地理解下一次量子革命的核心科学。该项目将提供计算效率高的模型,准确描述动态量子效应,包括利用自旋轨道耦合玻色-爱因斯坦凝聚体设计的色散关系的负质量流体动力学。超冷原子实验探索了一系列丰富的现象,这些现象将用于验证我们的理论技术,然后这些技术将用于推动新现象的发现。这一理论在核物理学中的扩展最终将用于模拟中子星中的超流体涡旋动力学,目的是理解脉冲星故障-中子星旋转的突然增加,即使它们不断失去角动量。该项目将推进广泛的领域,包括原子物理学,凝聚态,非线性光学,核理论和核天体物理学。这项研究将产生用于解决量子动力学问题的公开代码,这些代码将以直观和交互式的笔记本形式呈现,并附有视频教程,演示如何使用高级编程语言来驱动高性能计算机。这些工具将显著改善研究和教育的基础设施,教育研究人员有效利用大中型计算资源促进科学进步。通过该项目,本科生和研究生都将获得分析和高性能计算技能的培训,以在学术界、国家实验室和工业界取得成功。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Detecting entrainment in Fermi-Bose mixtures
检测费米-玻色混合物中的夹带
  • DOI:
    10.1103/physreva.105.063315
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Hossain, Khalid;Gupta, Subhadeep;Forbes, Michael McNeil
  • 通讯作者:
    Forbes, Michael McNeil
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Forbes其他文献

Benders Decomposition with Delayed Disaggregation for the Active Passive Vehicle Routing Problem
主动被动车辆路径问题的延迟分解 Benders 分解
The Value of Drilling—A Chance-Constrained Optimization Approach
  • DOI:
    10.1007/s42461-024-01061-8
  • 发表时间:
    2024-08-22
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Rick Jeuken;Michael Forbes
  • 通讯作者:
    Michael Forbes
Pupil-sparing third nerve palsies and hemiataxia: Claude’s and reverse Claude’s syndrome
  • DOI:
    10.1016/j.jocn.2015.12.010
  • 发表时间:
    2016-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    James R. Bateman;Pavan Murty;Michael Forbes;Kisha Young Collier;Danoushka Tememe;Octavio de Marchena;William J. Powers
  • 通讯作者:
    William J. Powers
Augmentation of CFTR maturation by S-nitrosoglutathione reductase 1 2
S-亚硝基谷胱甘肽还原酶促进 CFTR 成熟 1 2
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Zaman;Victoria Sawczak;Atiya Zaidi;Maya Butler;Deric Bennett;Paulina;Getsy;Maryam Zeinomar;Zivi Greenberg;Michael Forbes;Shagufta Rehman;Vinod;Jyothikumar;Kimberly Deronde;A. Sattar;Laura A. Smith;Deborah A. Corey;Adam;Straub;F. Sun;L. Palmer;A. Periasamy;S. Randell;T. Kelley;S. Lewis;B. Gaston
  • 通讯作者:
    B. Gaston
IN GOLF PUTTING Examining visual and attentional focus influences on golf putting performance using a dual-task paradigm
在高尔夫推杆中使用双任务范例检查视觉和注意力焦点对高尔夫推杆表现的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Forbes
  • 通讯作者:
    Michael Forbes

Michael Forbes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Forbes', 18)}}的其他基金

Compressible Turbulence from Quantum to Classical
从量子到经典的可压缩湍流
  • 批准号:
    2309322
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
CAREER: Algebraic and Geometric Complexity Theory
职业:代数和几何复杂性理论
  • 批准号:
    2047310
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
CRII: AF: Linear-Algebraic Pseudorandomness
CRII:AF:线性代数伪随机性
  • 批准号:
    1755921
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
AF: Small: Challenges in Unconditional Pseudorandomness for Boolean Computation
AF:小:布尔计算无条件伪随机性的挑战
  • 批准号:
    1814788
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Quantum Dynamics with Cold Atoms
冷原子的量子动力学
  • 批准号:
    1707691
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Exploration of efficient turbulence stimulation method with data assimilation of numerical simulation and measurement
数值模拟与测量数据同化的高效湍流模拟方法探索
  • 批准号:
    23H01622
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Supernovae simulation with self-consistent turbulence model incorporated: Dynamics of proto-neutron stars
结合自洽湍流模型的超新星模拟:原中子星动力学
  • 批准号:
    23H01199
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
  • 批准号:
    RGPIN-2022-04720
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
AGS-FIRP Track 2: Untangling the physics of aerosol activation, turbulence, and drizzle formation: Pi Chamber experiments and numerical simulation
AGS-FIRP 轨道 2:理清气溶胶活化、湍流和毛毛雨形成的物理原理:Pi 室实验和数值模拟
  • 批准号:
    2227012
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2317176
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Magnetohydrodynamic simulation study on solar prominence turbulence associated with magnetic destabilization
与磁失稳相关的太阳日珥湍流的磁流体动力学模拟研究
  • 批准号:
    20K14519
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ERI: Physical Simulation of Terrain-Induced and Large-Scale Turbulence Effects on the Effectiveness of Wind Mitigation Strategies for Low-Rise Buildings
ERI:地形诱发和大规模湍流对低层建筑防风策略有效性影响的物理模拟
  • 批准号:
    2138414
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Development of a hierarchical scale-adaptive large-eddy simulation method for the study of turbulence
开发用于湍流研究的分层尺度自适应大涡模拟方法
  • 批准号:
    RGPIN-2022-05155
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Asynchronous-coupled large-eddy simulation of Langmuir turbulence and the atmospheric surface layer
朗缪尔湍流和大气表层的异步耦合大涡模拟
  • 批准号:
    2054756
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
High Order Methods for Direct Numerical Simulation of Incompressible Flows and Applications to Transition to Turbulence
不可压缩流直接数值模拟的高阶方法及其在湍流过渡中的应用
  • 批准号:
    RGPIN-2017-05320
  • 财政年份:
    2021
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了