Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
基本信息
- 批准号:1707795
- 负责人:
- 金额:$ 18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-05-15 至 2018-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates a variety of questions in low-dimensional topology, the study of the global shapes of 3- and 4-dimensional spaces and of knots and surfaces contained within them. This subject lies at the crossroads of many disparate areas of mathematics, and it has a wide variety of applications ranging from cosmology (the shape of the universe) to biochemistry (the knotting of DNA molecules) to mathematical physics. Surprisingly, many problems in low dimensions are usually more difficult than their analogues in higher dimensions and require the use of invariants that go beyond traditional algebraic topology. The PI's particular area of expertise is in Heegaard Floer homology, a collection of invariants for 3- and 4-dimensional manifolds, which has been one of the most fruitful areas of research in low-dimensional topology since the early 2000s. These tools bring together several different fields of mathematics, including representation theory, differential geometry, and analysis, and the PI hopes to elucidate the connections between these different areas and expand the discourse among researchers in these fields.The specific goals of the project are (1) to make progress on a variety of concrete problems in 4-manifold topology, including knot concordance, exotic smooth structures, and embeddings of non-orientable surfaces; (2) to understand the relationship between the Heegaard Floer homology of a 3-manifold and topological properties such as the existence of incompressible surfaces, taut foliations, and left-orderings on the fundamental group; (3) to establish relationships between the knot invariants arising from gauge theory and symplectic geometry and those coming from representation theory and quantum algebra.
该项目研究了低维拓扑中的各种问题,研究了三维和四维空间的整体形状以及其中包含的结和表面。这门学科处于许多不同数学领域的交叉点,它有各种各样的应用,从宇宙学(宇宙的形状)到生物化学(DNA分子的结)到数学物理学。令人惊讶的是,低维中的许多问题通常比高维中的类似问题更困难,并且需要使用超越传统代数拓扑的不变量。PI的特殊专业领域是Heegaard flower同调,这是3维和4维流形的不变量集合,自21世纪初以来一直是低维拓扑研究中最富有成果的领域之一。这些工具汇集了几个不同的数学领域,包括表示理论、微分几何和分析,PI希望阐明这些不同领域之间的联系,并扩大这些领域研究人员之间的讨论。该项目的具体目标是:(1)在四流形拓扑中的各种具体问题上取得进展,包括结一致性,奇异光滑结构和不可定向表面的嵌入;(2)了解3流形的Heegaard花同调与基本群上不可压缩曲面、紧叶、左序等拓扑性质之间的关系;(3)建立规范论和辛几何的结不变量与表示论和量子代数的结不变量之间的关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Adam Levine其他文献
Incidence of Heart Failure In Rheumatoid Arthritis A Review of Literature And Meta-regression Analysis
- DOI:
10.1016/j.cardfail.2020.09.109 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Yaser Khalid;Neethi Dasu;Ankit Shah;Kirti Dasu;Adam Levine - 通讯作者:
Adam Levine
(Re-)imagining encounters between Late Antique viewers and Early Christian art
- DOI:
10.1057/pmed.2015.50 - 发表时间:
2016-03-10 - 期刊:
- 影响因子:0.300
- 作者:
Adam Levine - 通讯作者:
Adam Levine
Unplanned Pregnancy Following Norplant Removal in Adolescents and Adults
- DOI:
10.1016/s1083-3188(97)70237-7 - 发表时间:
1997-08-01 - 期刊:
- 影响因子:
- 作者:
Adam Levine;Toya Pound;Melisa Holmes;William Butler;Charles Tsai - 通讯作者:
Charles Tsai
A Global Database of Antiquities: Some Thoughts on Structure and Implementation
- DOI:
10.1007/s11759-013-9232-5 - 发表时间:
2013-04-10 - 期刊:
- 影响因子:0.500
- 作者:
Adam Levine - 通讯作者:
Adam Levine
Recurrent head and neck tumors in the setting of previous reconstructive surgery and radiation
- DOI:
10.1016/j.otot.2020.04.013 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:
- 作者:
Jaime B. Hyman;Shradha D. Khadge;Eliezer Kinberg;Brett Miles;Adam Levine - 通讯作者:
Adam Levine
Adam Levine的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Adam Levine', 18)}}的其他基金
Low-Dimensional Topology, Floer Homology, and Categorification
低维拓扑、Floer 同调和分类
- 批准号:
1806437 - 财政年份:2017
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Floer homology and surfaces in 3- and 4-manifolds
3 流形和 4 流形中的弗洛尔同源性和表面
- 批准号:
1405378 - 财政年份:2014
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
- 批准号:
23K03110 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Low-dimensional topology and links of singularities
低维拓扑和奇点链接
- 批准号:
2304080 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Instanton homology in low-dimensional topology
低维拓扑中的瞬子同调
- 批准号:
2304877 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
CAREER: Low dimensional topology via Floer theory
职业:通过弗洛尔理论的低维拓扑
- 批准号:
2238103 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Continuing Grant
New techniques and invariants in low-dimensional topology
低维拓扑中的新技术和不变量
- 批准号:
FT230100092 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
ARC Future Fellowships
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant
Conference: Low-Dimensional Manifolds, their Geometry and Topology, Representations and Actions of their Fundamental Groups and Connections with Physics
会议:低维流形、其几何和拓扑、其基本群的表示和作用以及与物理学的联系
- 批准号:
2247008 - 财政年份:2023
- 资助金额:
$ 18万 - 项目类别:
Standard Grant