CAREER: Low dimensional topology via Floer theory
职业:通过弗洛尔理论的低维拓扑
基本信息
- 批准号:2238103
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2028-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The focus of this project is investigating a variety of questions in low dimensional topology, which is the study of shapes of spaces with dimension at most four. Central in this subject is the study of knotting and linking of circles in three-dimensional spaces, called knot theory. For instance, knots and links can be used to construct three- and four-dimensional spaces. Low dimensional topology and knot theory have various connections to cosmology and physics (the shape of the universe and string theory), and biochemistry (the knotting behavior of DNA molecules). Unintuitively, many classification questions in topology are harder in dimensions three and four, and over the past three decades, topologists have developed modern tools (with roots in physics) for studying these questions. Two examples of such tools are Heegaard Floer invariants, which grew out of gauge theory, and Khovanov homology, which has roots in representation theory. This project will further develop these invariants and investigate their similarities and relations. Moreover, it will harness their power to study symmetries of surfaces (two-dimensional spaces), in connection with hyperbolic geometry and dynamics, and will investigate several fundamental questions in low-dimensional topology such as finding the minimum number of times a knot must cross itself to become unknotted. In parallel, this project aims to make mathematics and in particular topology accessible to a broad audience, through educational activities at all levels with an emphasis on diversity and inclusion. These activities include, establishing a Math Circle program in the Athens-Clarke County public library and organizing summer Math Camps for high school and middle school students, running a summer research experience project for undergraduate students and a topology summer school for graduate students and postdocs. The major goals of this research program are organized around four areas. First, developing new invariants for studying spatial graphs and graph concordance. The main tool will be a generalization of (minus) Heegaard Floer homology called, tangle Floer homology. Studying spatial graphs up to concordance has applications in studying equivariant concordance between knots, and strong concordance between links. Second, studying mapping class group and extensions of surface diffeomorphisms over handlebodies using another generalization of Heegaard Floer homology, called bordered Heegaard Floer homology. Third, further developing the bordered Heegaard Floer homology tools by generalizing and refining the contact invariant defined by the PI and her co-authors and use it to address open questions in contact topology. Lastly, the PI focuses on connections and similarities between Khovanov homology and Heegaard Floer invariants, with the three major goals of defining new concordance invariants to study smooth 4D Poincare conjecture, finding new lower bounds for the unknotting number and developing new invariants for transverse knots.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的重点是研究低维拓扑中的各种问题,这是对维数最多为4的空间形状的研究。这门学科的中心是研究三维空间中的圆的打结和连接,称为纽结理论。例如,结和链接可以用来构建三维和四维空间。低维拓扑和纽结理论与宇宙学和物理学(宇宙形状和弦理论)以及生物化学(DNA分子的打结行为)有各种联系。非直观地,拓扑学中的许多分类问题在三维和四维中更难,在过去的三十年里,拓扑学家已经开发出了研究这些问题的现代工具(源于物理学)。这种工具的两个例子是Heegaard Floer不变量,它产生于规范理论,和Khovanov同调,它起源于表示论。本项目将进一步发展这些不变量,并研究它们的相似性和关系。此外,它将利用他们的力量来研究曲面(二维空间)的对称性,与双曲几何和动力学有关,并将研究低维拓扑学中的几个基本问题,例如找到一个结必须穿过自己才能解开的最小次数。与此同时,该项目旨在通过各级教育活动,使广大受众能够接触数学,特别是拓扑学,并强调多样性和包容性。这些活动包括,在雅典-克拉克县公共图书馆建立数学圈计划,为高中和中学生组织暑期数学夏令营,为本科生举办暑期研究体验项目,为研究生和博士后举办拓扑学暑期学校。该研究计划的主要目标围绕四个领域组织。首先,发展新的不变量用于研究空间图和图协调。主要的工具将是一个推广的(减)Heegaard弗洛尔同调称为,缠结弗洛尔同调。研究空间图的一致性可应用于研究节点之间的等变一致性和链接之间的强一致性。第二,利用Heegaard Floer同调的另一种推广--加边Heegaard Floer同调,研究了空间体上的映射类群和曲面同调的扩张。第三,通过推广和改进PI及其合著者定义的接触不变量,进一步开发有边界的Heegaard Floer同调工具,并使用它来解决接触拓扑中的开放问题。最后,PI侧重于Khovanov同调和Heegaard Floer不变量之间的联系和相似性,其三个主要目标是定义新的协调不变量来研究光滑的4D Poincare猜想,为解结数找到新的下限,并为横向结开发新的不变量。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akram Alishahi其他文献
Bordered Floer homology and incompressible surfaces
有边弗洛尔同调和不可压缩表面
- DOI:
10.5802/aif.3276 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Akram Alishahi;Robert Lipshitz - 通讯作者:
Robert Lipshitz
Relating tangle invariants for Khovanov homology and knot Floer homology
关联 Khovanov 同源性和结 Floer 同源性的缠结不变量
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Akram Alishahi;Nathan Dowlin - 通讯作者:
Nathan Dowlin
Splitting maps in link Floer homology and integer points in permutahedra
链接Floer同源性中的分割映射和置换面体中的整数点
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Akram Alishahi;E. Gorsky;Beibei Liu - 通讯作者:
Beibei Liu
Unknotting number and Khovanov homology
解结数和霍瓦诺夫同调
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0.6
- 作者:
Akram Alishahi - 通讯作者:
Akram Alishahi
The Bar-Natan homology and unknotting number
Bar-Natan 同源性和解结数
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Akram Alishahi - 通讯作者:
Akram Alishahi
Akram Alishahi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akram Alishahi', 18)}}的其他基金
Homological Invariants in Low Dimensional Topology
低维拓扑中的同调不变量
- 批准号:
2000506 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Homological Invariants in Low Dimensional Topology
低维拓扑中的同调不变量
- 批准号:
1811210 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Standard Grant
Symplectic Topology, Symmetries, and Singularities
辛拓扑、对称性和奇点
- 批准号:
1505798 - 财政年份:2015
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
- 批准号:82002807
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
- 批准号:82003061
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
- 批准号:81873863
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Photovoltaic Devices with Earth-Abundant Low Dimensional Chalcogenides
职业:具有地球丰富的低维硫属化物的光伏器件
- 批准号:
2413632 - 财政年份:2024
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Learning of graph diffusion and transport from high dimensional data with low-dimensional structures
职业:从具有低维结构的高维数据中学习图扩散和传输
- 批准号:
2237842 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Learning and Selecting Low-Dimensional Models from Incomplete Data
职业:从不完整数据中学习和选择低维模型
- 批准号:
2239479 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Heegaard Floer homology and low-dimensional topology
职业:Heegaard Florer 同调和低维拓扑
- 批准号:
2237131 - 财政年份:2023
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Rational Design of One-Dimensional Contacts to Two-Dimensional Atomically Thin Heterostructure for High-Performance and Low Noise Field Effect Transistors and Biosensors
职业:一维接触到二维原子薄异质结构的合理设计,用于高性能和低噪声场效应晶体管和生物传感器
- 批准号:
2145962 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: accelerating machine learning with low dimensional structure
职业:利用低维结构加速机器学习
- 批准号:
2233762 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Exploiting Low-Dimensional Structures in Data Science: Manifold Learning, Partial Differential Equation Identification, and Neural Networks
职业:在数据科学中利用低维结构:流形学习、偏微分方程识别和神经网络
- 批准号:
2145167 - 财政年份:2022
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Quantum Gases in Low-Dimensional Rings
职业:低维环中的量子气体
- 批准号:
2046097 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant
CAREER: Exploring Luminescence in Low-Dimensional Halides
职业:探索低维卤化物中的发光
- 批准号:
2045490 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Continuing Grant