Problems in low-dimensional topology
低维拓扑问题
基本信息
- 批准号:2304856
- 负责人:
- 金额:$ 43.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Topology refers broadly to the study of shapes, and low-dimensional topology refers specifically to the study of shapes in dimensions one through four. These dimensions are special from an anthropic perspective, since they model our everyday perception of the physical world. They are also special from a mathematical perspective, since the phenomena they exhibit, and the collection of techniques used to study them are rather different from those in higher dimensions. The research component of the project explores a collection of important problems from across low-dimensional topology. A concrete example is a famous old problem which asks whether every continuous closed curve in the plane contains the vertices of a square. A unifying thread through the research is the use of modern methods from nearby fields, such as combinatorics (the mathematics of discrete structures) and symplectic geometry (the geometry of classical mechanics). Alongside the research, the PI proposes education and training initiatives reaching audiences from high schoolers to professional mathematicians. The PI will continue his active involvement with mathematics enrichment at the high school level through the Hampshire College Summer Studies in Mathematics and through Mathematical Staircase, Inc. The PI is in the process of editing a book based on a popular graduate summer school in low-dimensional topology that he ran. Moreover, the PI currently advises three PhD students. The award provides graduate student support and travel support for students and postdoctoral researchers.The PI proposes to study a collection of problems in low-dimensional topology, in continuation of an established program. The main themes are peg problems, using symplectic methods; exceptional Dehn surgery, using graphs of surface intersections; rational homology cobordism, using Floer homology and lattices; and ribbon concordance, using classical topological methods. Combinatorial and symplectic methods have long influenced the field. Amongst the various techniques that come to bear on low-dimensional topology are Floer homology, graphs of surface intersections, and lattice-theoretic methods. Each technique has led to sensational progress on the main problems in low-dimensional topology, and they lend very different perspectives on the subject. This project will more closely bind these techniques and low-dimensional topology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
拓扑学泛指对形状的研究,而低维拓扑学专门指对1到4维形状的研究。从人类的角度来看,这些维度是特别的,因为它们模拟了我们对物质世界的日常感知。从数学的角度来看,它们也很特别,因为它们所展示的现象,以及用于研究它们的技术集合,与高维的现象大不相同。该项目的研究部分探索了一系列跨低维拓扑的重要问题。一个具体的例子是一个著名的老问题,它问平面上的每条连续封闭曲线是否包含一个正方形的顶点。贯穿整个研究的一条统一线索是使用来自邻近领域的现代方法,如组合学(离散结构的数学)和辛几何(经典力学的几何)。在进行研究的同时,PI还提出了教育和培训计划,目标受众从高中生到专业数学家。PI将通过汉普郡学院夏季数学研究和数学阶梯公司继续积极参与高中水平的数学丰富。PI正在根据他开办的一个受欢迎的低维拓扑学研究生暑期学校编辑一本书。此外,PI目前有3名博士生。该奖项为研究生提供支持,并为学生和博士后研究人员提供旅行支持。PI提议研究低维拓扑中的一系列问题,作为既定计划的延续。主要的主题是钉住问题,使用辛方法;特殊的Dehn手术,使用曲面相交图;利用flower同调和格的有理同调配;并采用经典拓扑方法进行条带一致性分析。组合方法和辛方法长期影响着这一领域。研究低维拓扑的各种技术包括花同调、曲面交点图和格理论方法。每一种技术都在低维拓扑的主要问题上取得了令人瞩目的进展,它们为这个主题提供了非常不同的视角。本项目将更紧密地将这些技术与低维拓扑结合起来。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Greene其他文献
Examining the Associations Between Neighborhood Socioeconomic Status and the Potential Distribution of Four Urban Ecosystem Services in Rochester, NY
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Joshua Greene - 通讯作者:
Joshua Greene
The External Debt Problem of Sub-Saharan Africa
- DOI:
10.2307/3867242 - 发表时间:
1989-12-01 - 期刊:
- 影响因子:2.200
- 作者:
Joshua Greene - 通讯作者:
Joshua Greene
Joshua Greene的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Greene', 18)}}的其他基金
Combinatorial Methods in Low-Dimensional Topology
低维拓扑中的组合方法
- 批准号:
2005619 - 财政年份:2020
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
CAREER: Combinatorial Methods in Low-Dimensional Topology
职业:低维拓扑中的组合方法
- 批准号:
1455132 - 财政年份:2015
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Floer homology and low-dimensional topology
Florer同调和低维拓扑
- 批准号:
1207812 - 财政年份:2012
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
Collaborative Research: Genetics of Moral Cognition
合作研究:道德认知的遗传学
- 批准号:
0952129 - 财政年份:2009
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
Cognitive and Affective Neuroscience of Moral Judgment
道德判断的认知和情感神经科学
- 批准号:
0821978 - 财政年份:2008
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
相似国自然基金
骨髓微环境中正常造血干/祖细胞新亚群IL7Rα(-)LSK(low)细胞延缓急性髓系白血病进程的作用及机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
- 批准号:82371631
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
LIPUS促进微环境巨噬细胞释放CCL2诱导尿道周围平滑肌祖细胞定植与分化的机制研究
- 批准号:82370780
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
Ni-20Cr合金梯度纳米结构的低温构筑及其腐蚀行为研究
- 批准号:52301123
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
- 批准号:82271095
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
- 批准号:82270883
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
- 批准号:82270588
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:54.7 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solving Estimation Problems of Networked Interacting Dynamical Systems Via Exploiting Low Dimensional Structures: Mathematical Foundations, Algorithms and Applications
职业:通过利用低维结构解决网络交互动力系统的估计问题:数学基础、算法和应用
- 批准号:
2340631 - 财政年份:2024
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Re-examination of classical problems in low-dimensional topology from higher invariants
从更高的不变量重新审视低维拓扑中的经典问题
- 批准号:
23K03110 - 财政年份:2023
- 资助金额:
$ 43.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Machine learning of high-dimensional life dynamics time series for reduction to low-dimensional systems and its application to controlling problems
用于还原为低维系统的高维生命动态时间序列的机器学习及其在控制问题中的应用
- 批准号:
22K11941 - 财政年份:2022
- 资助金额:
$ 43.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Group problems in low-dimensional topology
低维拓扑中的群问题
- 批准号:
552542-2020 - 财政年份:2020
- 资助金额:
$ 43.87万 - 项目类别:
University Undergraduate Student Research Awards
Inverse problems on low-dimensional composite microorganism systems
低维复合微生物系统的反问题
- 批准号:
20K03750 - 财政年份:2020
- 资助金额:
$ 43.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Problems in Low Dimensional Geometry and Topology
低维几何和拓扑问题
- 批准号:
1006553 - 财政年份:2010
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant
Teichmuller theory and Low-Dimensional Geometric Variational Problems
Teichmuller理论和低维几何变分问题
- 批准号:
1007383 - 财政年份:2010
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
Geometric and Probabilistic Problems from Low Dimensional Gauge Theories
低维规范理论的几何和概率问题
- 批准号:
0601141 - 财政年份:2006
- 资助金额:
$ 43.87万 - 项目类别:
Standard Grant
Teichmuller Theory and Low-Dimensional Geometric Variational Problems
Teichmuller 理论和低维几何变分问题
- 批准号:
0505603 - 财政年份:2005
- 资助金额:
$ 43.87万 - 项目类别:
Continuing Grant