Quantum Optomechanics on Multiple Mass Scales

多质量尺度的量子光力学

基本信息

  • 批准号:
    1707840
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

The motion of everyday objects like humans, tennis balls and cars is very well described by the the laws of classical mechanics, first laid out by Isaac Newton. But the microscopic world of atoms and their constituent particles is more accurately described by quantum mechanics. These two regimes of physics - classical and quantum - are well understood, but what happens at the boundary between the two regimes? Is there even a clear, well-defined boundary? When does an object transition from classical to quantum behavior? And why should we care? Scientists have come to understand that quantum behavior is present in objects of all sizes, shapes and compositions, but is usually masked by thermal noise - the constant jittering of atoms that make up the objects due to heat energy stored and released. Removing thermal noise to reveal quantum mechanical behavior is very difficult even for a small collection of atoms, and certainly very hard for much larger objects. But it can be done, initially just for a few special atoms, and recently for increasingly larger objects. Macroscopic objects that exhibit quantum behavior are useful not only for studying the classical-quantum boundary, but also have some very practical applications. Among these applications is generating exotic quantum states of light, called "squeezed" states, that can be used to make more precise measurements than ordinary light. Interferometric gravitational wave detectors, such as the Advance LIGO ones that discovered gravitational waves from colliding black holes, rely on measuring the positions of mirrors with sub-attometer (less than one billionth of a billionth of a meter) precision. To further improve their sensitivity, one can inject squeezed states of light into these instruments. This work pertains to making these special states of light by strongly coupling laser light to movable mirrors whose motion is dominated by quantum mechanical effects rather than thermal noise. To make a squeezed state, it is necessary to find a way to correlate two usually uncorrelated properties of the light - a combination of the amplitude and phase. This is usually done by passing light through a nonlinear optical material whose refractive index depends on the strength of the electric field (amplitude of the light), such that amplitude fluctuations get imprinted on the phase of the light as it passes through that material. In this work the PI uses an alternative, and relatively unexplored, method of using optomechanical coupling. An intense light beam is incident on a movable mirror. The amplitude fluctuations of the light drive the mirror position due to radiation pressure. The mirror position fluctuations are imprinted on the phase of the light reflected from the mirror, thus correlating amplitude and phase fluctuations. The setup comprises an optical cavity where one mirror is a nano-fabricated cantilevered oscillator made of a GaAlAs heterostructure Bragg reflector. The other mirror is ablated and coated on to an optical fiber tip. The aim is to generate squeezed light in a broad audio frequency band using this apparatus. To do so, it is necessary to reduce the thermal noise of the mirror oscillator enough for its motion to be dominated by quantum fluctuations, which requires a highly optimized oscillator design that may also be cryogenic cooled. As with any quantum-limited experiment, a variety of other classical noises, such as seismic and acoustic vibrations, classical intensity and phase noise of the optical system must be reduced and controlled.
像人、网球和汽车这样的日常物体的运动,可以很好地用经典力学定律来描述,这是艾萨克·牛顿首先提出的。但是,原子及其组成粒子的微观世界由量子力学更准确地描述。物理学的这两个领域--经典和量子--已经被很好地理解了,但是在这两个领域的边界上会发生什么呢?是否有一个明确的、清晰的界限?什么时候物体从经典行为转变为量子行为?我们为什么要关心?科学家们已经认识到,量子行为存在于各种大小、形状和组成的物体中,但通常被热噪声所掩盖--由于储存和释放的热能,构成物体的原子不断抖动。消除热噪声以揭示量子力学行为即使对于一小部分原子也是非常困难的,对于更大的物体肯定是非常困难的。但这是可以做到的,最初只是针对一些特殊的原子,最近越来越大的物体。表现出量子行为的宏观物体不仅对研究经典-量子边界很有用,而且有一些非常实际的应用。在这些应用中,产生光的奇异量子态,称为“压缩”态,可以用来进行比普通光更精确的测量。干涉引力波探测器,如发现碰撞黑洞引力波的Advance LIGO探测器,依赖于以亚attometer(小于十亿分之一米)精度测量镜子的位置。为了进一步提高它们的灵敏度,人们可以将压缩态的光注入这些仪器。这项工作涉及通过将激光强耦合到可移动的反射镜来制造这些特殊的光状态,这些反射镜的运动由量子力学效应而不是热噪声主导。为了制造压缩态,必须找到一种方法来关联光的两个通常不相关的性质-振幅和相位的组合。这通常是通过使光通过非线性光学材料来实现的,该材料的折射率取决于电场的强度(光的振幅),使得振幅波动在光通过该材料时被印在光的相位上。在这项工作中,PI使用了另一种相对未开发的光机械耦合方法。一束强光入射到一面可移动的镜子上。由于辐射压力,光的振幅波动驱动反射镜的位置。反射镜位置波动被印在从反射镜反射的光的相位上,从而使振幅和相位波动相关。该装置包括光学腔,其中一个反射镜是由GaAlAs异质结构布拉格反射器制成的纳米制造的悬臂式振荡器。 另一个反射镜被烧蚀并涂覆在光纤尖端上。目的是利用该装置产生宽音频频带的压缩光。为此,有必要将镜像振荡器的热噪声降低到足以使其运动由量子波动主导,这需要高度优化的振荡器设计,该设计也可以是低温冷却的。与任何量子限制实验一样,必须减少和控制各种其他经典噪声,例如地震和声学振动,光学系统的经典强度和相位噪声。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approaching the motional ground state of a 10-kg object
  • DOI:
    10.1126/science.abh2634
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    56.9
  • 作者:
    C. Whittle;E. Hall;S. Dwyer;N. Mavalvala;V. Sudhir;R. Abbott;A. Ananyeva;C. Austin;L. Barsotti;J. Betzwieser;C. Blair;A. Brooks;D. Brown;A. Buikema;C. Cahillane;J. Driggers;A. Effler;Á. Fernández-Galiana;P. Fritschel;V. Frolov;T. Hardwick;M. Kasprzack;K. Kawabe;N. Kijbunchoo;J. Kissel;G. Mansell;F. Matichard;L. McCuller;T. McRae;A. Mullavey;A. Pele;R. Schofield;D. Sigg;M. Tse;G. Vajente;D. Vander-Hyde;Hang Yu;Haocun Yu;C. Adams;R. Adhikari;S. Appert;K. Arai;J. Areeda;Y. Asali;S. Aston;A. Baer;M. Ball;S. Ballmer;S. Banagiri;D. Barker;J. Bartlett;B. Berger;D. Bhattacharjee;G. Billingsley;S. Biscans;R. Blair;N. Bode;P. Booker;R. Bork;A. Bramley;K. Cannon;X. Chen;A. Ciobanu;F. Clara;C. Compton;S. Cooper;K. Corley;S. Countryman;P. Covas;D. Coyne;L. Datrier;D. Davis;C. D. Fronzo;K. Dooley;P. Dupej;T. Etzel;M. Evans;T. Evans;J. Feicht;P. Fulda;M. Fyffe;J. Giaime;K. Giardina;P. Godwin;E. Goetz;S. Gras;C. Gray;R. Gray;A. Green;E. Gustafson;R. Gustafson;J. Hanks;J. Hanson;R. Hasskew;M. Heintze;A. Helmling-Cornell;N. Holland;J. Jones;S. Kandhasamy;S. Karki;P. King;Rahul Kumar;M. Landry;B. Lane;B. Lantz;M. Laxen;Y. Lecoeuche;J. Leviton;J. Liu;M. Lormand;A. Lundgren;R. Macas;M. Macinnis;D. Macleod;S. M'arka;Z. M'arka;D. Martynov;K. Mason;T. Massinger;R. McCarthy;D. McClelland;S. Mccormick;J. McIver;G. Mendell;K. Merfeld;E. Merilh;F. Meylahn;T. Mistry;R. Mittleman;G. Moreno;C. Mow-Lowry;S. Mozzon;T. Nelson;P. Nguyen;L. Nuttall;J. Oberling;R. Oram;C. Osthelder;D. Ottaway;H. Overmier;J. R. Palamos;W. Parker;E. Payne;R. Penhorwood;C. Perez;M. Pirello;H. Radkins;K. Ramirez;J. Richardson;K. Riles;N. Robertson;J. Rollins;C. Romel;J. Romie;M. Ross;K. Ryan;T. Sadecki;E. Sanchez;L. Sanchez;T. R. Saravanan;R. Savage;D. Schaetzl;R. Schnabel;E. Schwartz;D. Sellers;T. Shaffer;B. Slagmolen;J. R. Smith;S. Soni;B. Sorazu;A. Spencer;K. Strain;L. Sun;M. J. Szczepa'nczyk;M. Thomas;P. Thomas;K. Thorne;K. Toland;C. Torrie;G. Traylor;A. Urban;G. Valdes;P. Veitch;K. Venkateswara;Gautam Venugopalan;A. Viets;T. Vo;C. Vorvick;M. Wade;R. Ward;J. Warner;B. Weaver;R. Weiss;B. Willke;C. Wipf;L. Xiao;H. Yamamoto;L. Zhang;M. Zucker;J. Zweizig
  • 通讯作者:
    C. Whittle;E. Hall;S. Dwyer;N. Mavalvala;V. Sudhir;R. Abbott;A. Ananyeva;C. Austin;L. Barsotti;J. Betzwieser;C. Blair;A. Brooks;D. Brown;A. Buikema;C. Cahillane;J. Driggers;A. Effler;Á. Fernández-Galiana;P. Fritschel;V. Frolov;T. Hardwick;M. Kasprzack;K. Kawabe;N. Kijbunchoo;J. Kissel;G. Mansell;F. Matichard;L. McCuller;T. McRae;A. Mullavey;A. Pele;R. Schofield;D. Sigg;M. Tse;G. Vajente;D. Vander-Hyde;Hang Yu;Haocun Yu;C. Adams;R. Adhikari;S. Appert;K. Arai;J. Areeda;Y. Asali;S. Aston;A. Baer;M. Ball;S. Ballmer;S. Banagiri;D. Barker;J. Bartlett;B. Berger;D. Bhattacharjee;G. Billingsley;S. Biscans;R. Blair;N. Bode;P. Booker;R. Bork;A. Bramley;K. Cannon;X. Chen;A. Ciobanu;F. Clara;C. Compton;S. Cooper;K. Corley;S. Countryman;P. Covas;D. Coyne;L. Datrier;D. Davis;C. D. Fronzo;K. Dooley;P. Dupej;T. Etzel;M. Evans;T. Evans;J. Feicht;P. Fulda;M. Fyffe;J. Giaime;K. Giardina;P. Godwin;E. Goetz;S. Gras;C. Gray;R. Gray;A. Green;E. Gustafson;R. Gustafson;J. Hanks;J. Hanson;R. Hasskew;M. Heintze;A. Helmling-Cornell;N. Holland;J. Jones;S. Kandhasamy;S. Karki;P. King;Rahul Kumar;M. Landry;B. Lane;B. Lantz;M. Laxen;Y. Lecoeuche;J. Leviton;J. Liu;M. Lormand;A. Lundgren;R. Macas;M. Macinnis;D. Macleod;S. M'arka;Z. M'arka;D. Martynov;K. Mason;T. Massinger;R. McCarthy;D. McClelland;S. Mccormick;J. McIver;G. Mendell;K. Merfeld;E. Merilh;F. Meylahn;T. Mistry;R. Mittleman;G. Moreno;C. Mow-Lowry;S. Mozzon;T. Nelson;P. Nguyen;L. Nuttall;J. Oberling;R. Oram;C. Osthelder;D. Ottaway;H. Overmier;J. R. Palamos;W. Parker;E. Payne;R. Penhorwood;C. Perez;M. Pirello;H. Radkins;K. Ramirez;J. Richardson;K. Riles;N. Robertson;J. Rollins;C. Romel;J. Romie;M. Ross;K. Ryan;T. Sadecki;E. Sanchez;L. Sanchez;T. R. Saravanan;R. Savage;D. Schaetzl;R. Schnabel;E. Schwartz;D. Sellers;T. Shaffer;B. Slagmolen;J. R. Smith;S. Soni;B. Sorazu;A. Spencer;K. Strain;L. Sun;M. J. Szczepa'nczyk;M. Thomas;P. Thomas;K. Thorne;K. Toland;C. Torrie;G. Traylor;A. Urban;G. Valdes;P. Veitch;K. Venkateswara;Gautam Venugopalan;A. Viets;T. Vo;C. Vorvick;M. Wade;R. Ward;J. Warner;B. Weaver;R. Weiss;B. Willke;C. Wipf;L. Xiao;H. Yamamoto;L. Zhang;M. Zucker;J. Zweizig
Sub-hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator
  • DOI:
    10.1103/physreva.100.013853
  • 发表时间:
    2018-12
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    T. Bodiya;V. Sudhir;C. Wipf;N. Smith;A. Buikema;A. Kontos;Hang Yu;N. Mavalvala
  • 通讯作者:
    T. Bodiya;V. Sudhir;C. Wipf;N. Smith;A. Buikema;A. Kontos;Hang Yu;N. Mavalvala
Radiation-pressure-mediated control of an optomechanical cavity
  • DOI:
    10.1103/physreva.97.013827
  • 发表时间:
    2018-01-18
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Cripe, Jonathan;Aggarwal, Nancy;Corbitt, Thomas
  • 通讯作者:
    Corbitt, Thomas
Quantum correlations between light and the kilogram-mass mirrors of LIGO
  • DOI:
    10.1038/s41586-020-2420-8
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Haocun Yu;L. McCuller;M. Tse;N. Kijbunchoo;L. Barsotti;N. Mavalvala;J. C. D. S. E. A. M. A. P. V. V. F. D. E. T. A. D. B. Betzwieser Blair Dwyer Effler Evans Fernandez-Gali-J.-C.-D.-S.-E.-A.-M.-A.-P.-V.-V.-F.-D.-E.-T.-A.-D.;J. Betzwieser;C. Blair;S. Dwyer;A. Effler;M. Evans;Á. Fernández-Galiana;P. Fritschel;V. Frolov;F. Matichard;D. McClelland;T. McRae;A. Mullavey;D. Sigg;B. Slagmolen;C. Whittle;A. Buikema;Y. Chen;T. Corbitt;R. Schnabel;R. Abbott;C. Adams;R. Adhikari;A. Ananyeva;S. Appert;K. Arai;J. Areeda;Y. Asali;S. Aston;C. Austin;A. Baer;M. Ball;S. Ballmer;S. Banagiri;D. Barker;J. Bartlett;B. Berger;D. Bhattacharjee;G. Billingsley;S. Biscans;R. Blair;N. Bode;P. Booker;R. Bork;A. Bramley;A. Brooks;D. Brown;C. Cahillane;K. Cannon;X. Chen;A. Ciobanu;F. Clara;S. Cooper;K. Corley;S. Countryman;P. Covas;D. Coyne;L. Datrier;D. Davis;C. Di Fronzo;K. Dooley;J. Driggers;P. Dupej;T. Etzel;T. Evans;J. Feicht;P. Fulda;M. Fyffe;J. Giaime;K. Giardina;P. Godwin;E. Goetz;S. Gras;C. Gray;R. Gray;A. Green;Anchal Gupta;E. Gustafson;R. Gustafson;J. Hanks;J. Hanson;T. Hardwick;R. Hasskew;M. Heintze;A. Helmling-Cornell;N. Holland;J. Jones;S. Kandhasamy;S. Karki;M. Kasprzack;K. Kawabe;P. King;J. Kissel;Rahul Kumar;M. Landry;B. Lane;B. Lantz;M. Laxen;Y. Lecoeuche;J. Leviton;J. Liu;M. Lormand;A. Lundgren;R. Macas;M. Macinnis;D. Macleod;G. Mansell;S. Márka;Z. Márka;D. Martynov;K. Mason;T. Massinger;R. McCarthy;S. Mccormick;J. McIver;G. Mendell;K. Merfeld;E. Merilh;F. Meylahn;T. Mistry;R. Mittleman;G. Moreno;C. Mow-Lowry;S. Mozzon;T. Nelson;P. Nguyen;L. Nuttall;J. Oberling;R. Oram;C. Osthelder;D. Ottaway;H. Overmier;J. R. Palamos;W. Parker;E. Payne;A. Pele;C. Perez;M. Pirello;H. Radkins;K. Ramirez;J. Richardson;K. Riles;N. Robertson;J. Rollins;C. Romel;J. Romie;M. Ross;K. Ryan;T. Sadecki;E. Sanchez;L. Sanchez;T. R. Saravanan;R. Savage;D. Schaetzl;R. Schofield;E. Schwartz;D. Sellers;T. Shaffer;J. R. Smith;S. Soni;B. Sorazu;A. Spencer;K. Strain;L. Sun;M. Szczepańczyk;M. Thomas;P. Thomas;K. Thorne;K. Toland;C. Torrie;G. Traylor;A. Urban;G. Vajente;G. Valdes;D. Vander-Hyde;P. Veitch;K. Venkateswara;Gautam Venugopalan;A. Viets;T. Vo;C. Vorvick;M. Wade;R. Ward;J. Warner;B. Weaver;R. Weiss;B. Willke;C. Wipf;L. Xiao;H. Yamamoto;Hang Yu;L. Zhang;M. Zucker;J. Zweizig
  • 通讯作者:
    Haocun Yu;L. McCuller;M. Tse;N. Kijbunchoo;L. Barsotti;N. Mavalvala;J. C. D. S. E. A. M. A. P. V. V. F. D. E. T. A. D. B. Betzwieser Blair Dwyer Effler Evans Fernandez-Gali-J.-C.-D.-S.-E.-A.-M.-A.-P.-V.-V.-F.-D.-E.-T.-A.-D.;J. Betzwieser;C. Blair;S. Dwyer;A. Effler;M. Evans;Á. Fernández-Galiana;P. Fritschel;V. Frolov;F. Matichard;D. McClelland;T. McRae;A. Mullavey;D. Sigg;B. Slagmolen;C. Whittle;A. Buikema;Y. Chen;T. Corbitt;R. Schnabel;R. Abbott;C. Adams;R. Adhikari;A. Ananyeva;S. Appert;K. Arai;J. Areeda;Y. Asali;S. Aston;C. Austin;A. Baer;M. Ball;S. Ballmer;S. Banagiri;D. Barker;J. Bartlett;B. Berger;D. Bhattacharjee;G. Billingsley;S. Biscans;R. Blair;N. Bode;P. Booker;R. Bork;A. Bramley;A. Brooks;D. Brown;C. Cahillane;K. Cannon;X. Chen;A. Ciobanu;F. Clara;S. Cooper;K. Corley;S. Countryman;P. Covas;D. Coyne;L. Datrier;D. Davis;C. Di Fronzo;K. Dooley;J. Driggers;P. Dupej;T. Etzel;T. Evans;J. Feicht;P. Fulda;M. Fyffe;J. Giaime;K. Giardina;P. Godwin;E. Goetz;S. Gras;C. Gray;R. Gray;A. Green;Anchal Gupta;E. Gustafson;R. Gustafson;J. Hanks;J. Hanson;T. Hardwick;R. Hasskew;M. Heintze;A. Helmling-Cornell;N. Holland;J. Jones;S. Kandhasamy;S. Karki;M. Kasprzack;K. Kawabe;P. King;J. Kissel;Rahul Kumar;M. Landry;B. Lane;B. Lantz;M. Laxen;Y. Lecoeuche;J. Leviton;J. Liu;M. Lormand;A. Lundgren;R. Macas;M. Macinnis;D. Macleod;G. Mansell;S. Márka;Z. Márka;D. Martynov;K. Mason;T. Massinger;R. McCarthy;S. Mccormick;J. McIver;G. Mendell;K. Merfeld;E. Merilh;F. Meylahn;T. Mistry;R. Mittleman;G. Moreno;C. Mow-Lowry;S. Mozzon;T. Nelson;P. Nguyen;L. Nuttall;J. Oberling;R. Oram;C. Osthelder;D. Ottaway;H. Overmier;J. R. Palamos;W. Parker;E. Payne;A. Pele;C. Perez;M. Pirello;H. Radkins;K. Ramirez;J. Richardson;K. Riles;N. Robertson;J. Rollins;C. Romel;J. Romie;M. Ross;K. Ryan;T. Sadecki;E. Sanchez;L. Sanchez;T. R. Saravanan;R. Savage;D. Schaetzl;R. Schofield;E. Schwartz;D. Sellers;T. Shaffer;J. R. Smith;S. Soni;B. Sorazu;A. Spencer;K. Strain;L. Sun;M. Szczepańczyk;M. Thomas;P. Thomas;K. Thorne;K. Toland;C. Torrie;G. Traylor;A. Urban;G. Vajente;G. Valdes;D. Vander-Hyde;P. Veitch;K. Venkateswara;Gautam Venugopalan;A. Viets;T. Vo;C. Vorvick;M. Wade;R. Ward;J. Warner;B. Weaver;R. Weiss;B. Willke;C. Wipf;L. Xiao;H. Yamamoto;Hang Yu;L. Zhang;M. Zucker;J. Zweizig
Measurement of quantum back action in the audio band at room temperature
  • DOI:
    10.1038/s41586-019-1051-4
  • 发表时间:
    2019-04-18
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Cripe, Jonathan;Aggarwal, Nancy;Corbitt, Thomas
  • 通讯作者:
    Corbitt, Thomas
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nergis Mavalvala其他文献

Quantum metrology for gravitational wave astronomy
引力波天文学的量子计量学
  • DOI:
    10.1038/ncomms1122
  • 发表时间:
    2010-11-16
  • 期刊:
  • 影响因子:
    15.700
  • 作者:
    Roman Schnabel;Nergis Mavalvala;David E. McClelland;Ping K. Lam
  • 通讯作者:
    Ping K. Lam
Raman study of defects in a GaAs buffer layer grown by low-temperature molecular beam epitaxy
  • DOI:
    10.1007/bf02673349
  • 发表时间:
    1990-11-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    R. S. Berg;Nergis Mavalvala;Tracie Steinberg;F. W. Smith
  • 通讯作者:
    F. W. Smith

Nergis Mavalvala的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nergis Mavalvala', 18)}}的其他基金

Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
  • 批准号:
    2308969
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Quantum Optomechanics: From Fundamental Tests to Quantum Tools of the Future
量子光力学:从基础测试到未来的量子工具
  • 批准号:
    2012088
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
  • 批准号:
    1404245
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Quantum Optomechanics on Multiple Mass Scales
多质量尺度的量子光力学
  • 批准号:
    1068772
  • 财政年份:
    2011
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Quantum effects in radiation-pressure-dominated optomechanical systems
辐射压主导光机械系统中的量子效应
  • 批准号:
    0758188
  • 财政年份:
    2008
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Development of Technologies for Sub-Quantum-Noise-Limited Gravitational-wave Interferometers
亚量子噪声限制引力波干涉仪技术发展
  • 批准号:
    0457264
  • 财政年份:
    2005
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing grant
Experimental Tests of Non-Classical (Squeezed) Light in Advanced Gravitational-wave Interferometers
先进引力波干涉仪中非经典(压缩)光的实验测试
  • 批准号:
    0300345
  • 财政年份:
    2003
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

Brillouin Quantum Optomechanics
布里渊量子光力学
  • 批准号:
    MR/X024105/1
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Fellowship
Quantum Optics and Optomechanics: From Fundamental Tests To Quantum Tools of the Future
量子光学和光机械:从基础测试到未来的量子工具
  • 批准号:
    2308969
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CAREER: Torsional Quantum Optomechanics
职业:扭转量子光力学
  • 批准号:
    2239735
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
PhD Studentship in Experimental Levitated Quantum Optomechanics
实验悬浮量子光力学博士生
  • 批准号:
    2869813
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Studentship
Optomechanics in the microwave regime for quantum technologies and fundamental sciences
量子技术和基础科学微波领域的光力学
  • 批准号:
    DGECR-2022-00128
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Launch Supplement
Thin film superconductors for torsional optomechanics studies
用于扭转光力学研究的薄膜超导体
  • 批准号:
    573055-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    University Undergraduate Student Research Awards
Nano-Optomechanics with Applications to Protein Dynamics and Terahertz Technology
纳米光力学在蛋白质动力学和太赫兹技术中的应用
  • 批准号:
    RGPIN-2017-03830
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Experimental Optomechanics
实验光力学
  • 批准号:
    CRC-2016-00120
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Canada Research Chairs
Optomechanics in the microwave regime for quantum technologies and fundamental sciences
量子技术和基础科学微波领域的光力学
  • 批准号:
    RGPIN-2022-04435
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Levitated Quantum Optomechanics with Trapped, Rotating Microparticles
具有捕获的旋转微粒的悬浮量子光力学
  • 批准号:
    DP220102303
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了